Appendix C. Data Sources

Table C1. Data Sources for Upper Owyhee Watershed Subbasin Assessment.

Water Body	Data Source	Type of Data	When Collected
Deep Creek, Nickel Creek, Pole Creek, Castle Creek, Red Canyon Creek	Idaho Department of Environmental Quality, Boise Regional Office	Temperature	2000 and 2001
Battle Creek and Shoofly Creek	Idaho Department of Environmental Quality, Boise Regional Office	Bacteria	2000 and 2001
Juniper Basin Reservoir and Blue Creek Reservoir	Idaho Department of Environmental Quality, Boise Regional Office	Turbidity	2001
Pole Creek, Castle Creek, Deep Creek, Nickel Creek	United States Department of Interior, Bureau of Land Management	Fish	1999-2000
Various Streams in Watershed	Idaho Department of Environmental Quality, Boise Regional Office	Beneficial Use Reconnaissance Program Data	1991-1998

Appendix D. Stream Segment Temperature Model (SSTEMP) and Hydrology Model

Modeling Approach

SSTEMP and SSSHADE were the models used to assess the effects of solar radiation, channel morphology and instream flow on temperature in stream segments of the Upper Owyhee Watershed. The models were developed to help predict the consequences of manipulating various factors influencing water temperature. SSSHADE is a stream shading model which is used to provide input variables to the SSTEMP model. SSSHADE estimates stream shading from various riparian (vegetation) and topographic conditions

SSTEMP and SSSHADE require input data for 28 parameter and state variables ranging from channel conditions to climate. Many of these were kept constant for all model runs. Several parameters were varied to assess the impact of various factors. The following is a model input parameters are described below.

Input Values and Model Calibration

Stream Network Hydrology:

Segment Inflow: For all situations with streams with headwaters, this value was set at zero. For segments streams that are confluence of two streams this value was set at the addition of the flow from both water bodies. Flow was determined with the use of the flow model developed by Hortness and Berenbrock (2001). The flow model will be discussed later.

Inflow Temperature: For all situations with streams with headwaters, this value was set at 8.3°C. For streams that are confluence of two streams this value was set based on the flow from both water bodies and the following formula:

$$T_j = \underbrace{(Q_{\underline{1}} * T_{\underline{1}}) \ + (Q_{\underline{2}} * T_{\underline{2}})}_{Q_1 + Q_2}$$

where: T_i = water temperature below junction

 Q_n = discharge of source n

 T_n = water temperature of source n

Stream Outflow: This value was obtained by calculating the inflow through the discharge model (Hortness and Berenbrock 2001). There is no allowance for reaches that are losing or gaining reaches. Thus, discharge is a steady state where outflow equals inflow from the beginning of the reach plus any inflow determined by the hydrology model.

Accretion Temperature: This the expected ground water temperature. This value is calculated by determining the average yearly temperature. Using the average yearly temperature obtained from the National Weather Service at the Boise City Municipal Airport (Boise, Idaho), a ground water temperature of 8.3° C was obtained. To calculate the difference in the average yearly temperature the following formula was used:

$$T_a = T_o + C_t * (Z - Z_0)$$

where: T_a = average yearly air temperature at elevation E ($^{\circ}$ C)

 T_0 = average air temperature at elevation Eo ($^{\circ}$ C)

Z = Mean elevation of segment

 Z_o = elevation at station (Boise)

 C_t = moist adiabatic lapse rate (-0.00656 °C/m)

Stream Network Geometry:

Segment Lengths: Derived from the stream reach length from GIS coverages.

Latitude: Used 0.733 radians (42.0°) for all segments representing the lowest latitude of the study area.

Dams at Heads of Segments: No dams were figured into the model.

Upstream Elevation: Determined for each stream reach from USGS 7.5-minute quad maps.

Downstream Elevation: Determined for each stream reach from USGS 7.5-minute quad maps.

Width's A Term: The initial value was determined with the model. The width/depth ratio was set near 25 for all streams. The width/depth ratio was set at this value based on the limited BURP data. Width was then calculated through the model based on discharge (flow) input and calculated stream gradient. The width value was changed to obtain a possible width/depth ratio of near 12 to obtain a possible value once stream morphology conditions improve in response to changes in riparian vegetation and streambank conditions.

The use of the wetted width is an accepted input parameter if the stream width is not varied during the model run (Bartholow 1999). If wetted width is used, then the width's B Term is zero.

B Term where W = A*Q*B: This input is a calculated formula using available flow data. With limited flow data for the Upper Owyhee Watershed, this value was set at zero.

Manning's n: A default value of 0.035 was used because of the variability of substrate in the Upper Owyhee Watershed. The substrate varies from sand-silt to large boulders. The gradient can vary from 1-6%.

Stream Network Meteorology:

Air Temperature: The daily mean air temperature for the month of June was calculated from the mean daily temperature from the National Weather Service in Boise, Idaho. The Boise mean daily air temperature was used due to the fact that field data temperature loggers could not be in place early in the season due to travel difficulties and reluctance to leave data loggers out through the winter. To compensate for the possible difference in air temperature from Boise to the Upper Owyhee Watershed, the following formula was used:

$$T_a = T_o + C_t * (Z - Z_0)$$

where: T_a = average yearly air temperature at elevation E ($^{\circ}$ C)

 T_0 = average air temperature at elevation Eo ($^{\circ}$ C)

Z = Mean elevation of segment

 Z_0 = elevation at station (Boise)

 $C_t = moist adiabatic lapse rate (-0.00656 °C/m)$

Daily mean air temperatures for the months of July and August were calculated using temperature data recorded by data loggers in place in the watershed. The ambient air temperature-monitoring site was located at approximately 1,500 meters (4921 feet) elevation near the confluence of Castle Creek and Deep Creek.

Maximum Air Temperature: For the month of June the model calculated the monthly maximum temperature. Once again the lack of data prevented the use of actual in-field data. With the high probability of a wide variance of data from the beginning of the month to the end of the month, it was decided the model would be sufficient for calculating the mean monthly maximum air temperature for June.

For July and August, the actual mean monthly air temperature was used. The ambient air temperature monitoring site was located at approximately 1,500 meters (4921 feet) elevation near the confluence of Castle Creek and Deep Creek.

Relative Humidity: Relative humidity was set at 61.2% for the months of June, July and August. This value was determined sing the average relative humidity obtained from the National Weather Service in Boise, Idaho. The value obtained from Boise was then corrected for elevation using the following formula:

Rh =
$$R_0*[1.6040^{(T_0-T_a)}]*[T_a+273.16)/(T_0+273.16)]$$

where:

Rh = relative humidity for temperature T_a

 R_o = relative humidity at station T_a T_a = air temperature at segment

To = air temperature at station

 $^{\wedge}$ = exponentiation

$$0 <= Rh <= 1$$

Wind Speed: The value obtained was from the National Weather Service in Boise, Idaho and averaged for June, July and August.

Ground Temperature: Using the average yearly air temperature obtained from the National Weather Service at the Boise City Municipal Airport (Boise, Idaho) after calibrating for altitude difference the value of 8.3°C was obtained. To calculate the difference in the average yearly temperature the following formula was used:

$$T_a = T_o + C_t * (Z - Z_0)$$

where: T_a = average yearly air temperature at elevation E ($^{\circ}$ C) T_o = average air temperature at elevation Eo ($^{\circ}$ C)

Z = Mean elevation of segment

 Z_0 = elevation at station (Boise)

 C_t = moist adiabatic lapse rate (-0.00656 °C/m)

Thermal Gradient: A default setting of 1.65joules/m²/second was used.

Possible Sun: This value was obtained from the National Weather Service in Boise, Idaho and averaged for June, July and August. Value set at 76% for all three months of the model run.

Dust Coefficient: The input value was set at 6 units for entire run of the model. The input value range is 3 to 10 as supplied by Bartholow (1999) and taken from Tennessee Valley Authority (1972). The middle value was used as the input value due to a lack of data.

Ground Reflectivity: The input value was set at 15 and represents flat ground and rock (range 12-15). The high value was selected due to bare soils with high amounts of silt and sand in the surrounding soils.

Solar Radiation: Model defined.

Stream Network Shade:

Shade: Model generated based on input values for calibration. Shade then adjusted to obtain WQS criteria. Shade contains both topographic and vegetation shade. Topographic shade determined by value input from topographic attitude. Vegetation shade is then determined by model as shade increases. That is, since the topographic shade is a steady state input, as total shade is increased this would represent an increase in vegetation shade.

Stream Network Optional Shading Parameters:

Shading parameters are optional inputs. For the Upper Owyhee these values were entered during calibration reasons. Most of the values were entered using available data. In most incidences, once the required reductions (Joules/m²/sec) were calculated these parameters were ignored by the model.

Segment Azimuth: This was determined from USGS 7.5-minute topographic maps. Since most streams have a general north to south flow (headwaters to mouth) this input value was set at zero (0.00 radians) for most streams. Two streams have northwest to southeast and southwest to northwest aspects with the input value set at either $+45^{\circ}$ (+(0.785 radians)) or -45° (-0.785 radians).

Topographic Attitude: This input value was the most difficult to determine and was usually set at 45° (0.785 radians) due to the steepness of the canyons. In many incidences, this value then converted to a topographic shading factor of 35%. This input value was entered for both the west and east sides of the water bodies. For two streams that do not have steep canyons, the value was set at 10° (0.175 radians). This value was determined from USGS 7.5 minute topographic maps.

Vegetation Height: Most of the riparian woody vegetation associated with riparian areas in the Upper Owyhee Watershed is of willows (Salix sp.). Some of the willow species that can be encountered include whiplash willow (S. lasiandra), sandbar willow (S. longifollia), and coyote willow (S. exigua). Most of these species are low lying shrubs with a canopy height between 7 and 15 feet. To offset for different species, an input value of 10 feet was set as default for vegetation height. In almost all model runs, vegetation shading calculated to be 0%.

Vegetation Crown: Many of the aspects discussed in vegetation height hold true for the vegetation crown. Most of the woody vegetation in the riparian areas Of the Upper Owyhee Watershed is low-brushy species with multiple shoots creating a dense canopy. To offset for different species encountered, input value of ten (10) feet was set as default for vegetation canopy on both the west and east sides. In almost all model runs, vegetation shading was calculated at zero percent (0%).

Vegetation Offset: Vegetation offset is the distance from the center of the water body to the main trunk of the vegetation. This input value was set at 20) feet as a default. Little information is available to assist with providing an accurate estimate. In almost all model runs, vegetation shading was calculated to be 0%.

Vegetation Density: Bartholow (1999) suggested a dense emergent vegetation cover could have a vegetation density 90%. This value was used as the input for vegetation density. It was shown that this factor had little influence on most streams due to vegetation height, crown and offset.

Stream Network Time of Year:

Time of Year: The value was set at the 15th for June, July and August. This computes an average value for a 30 day model run. This value is most important for determining length of day and sun angle.

Output Values

Stream Segment Intermediate Values:

Day Length: This value is determined by the input for time of year and latitude.

Slope: Calculated from input values for elevation change and stream length

Width: This is the same as the width input value.

Depth: Calculated from segment outflow, gradient and depth.

Vegetation Shade: Total shade minus topographic shade. Vegetation shade may vary based on time of year and azimuth inputs.

Topographic Shade: The model calculates this from input for latitude, time of year, azimuth, and topographic attitude.

Stream Segment Mean Heat Flux (Inflow or Outflow):

Convection: Convection component heat flux gain or loss at inflow or at outflow.

Atmosphere: Atmosphere component heat flux gain.

Conduction: Conduction component heat flux gain or loss at inflow or outflow.

Friction: Friction component heat flux gain or loss.

Evaporation: Friction component heat flux gain or loss at inflow or outflow.

Solar: Solar component heat flux gain or loss.

Background Radiation: Background radiation component heat flux gain or loss at inflow or outflow.

Vegetation: Vegetation component heat flux gain or loss.

Net: Net increase or decrease of heat flux from the sum of the above mentioned components.

Stream Segment Model Results-Outflow Temperature:

Predicted Mean Temperature: Model predicted mean daily water temperature in relation to model inputs.

Estimated Maximum Temperature: Model estimated maximum water daily temperature.

Approximate Minimum Temperature: Model approximated minimum daily water temperature (mean temperature - (maximum temperature-mean temperature)).

Mean Equilibrium: Model mean daily water temperature equilibrium if conditions remain the same.

Maximum Equilibrium: Model maximum daily water temperature equilibrium which maximum temperature may approach.

Minimum Equilibrium: Model minimum daily water temperature which minimum temperature may approach (equilibrium mean temperature - (equilibrium maximum temperature - equilibrium mean temperature)).

Model Validation

The model was validated by determining the root mean square error for both the average daily temperatures and the maximum daily temperatures for the months of July and August 2000.

Unfortunately, the available data consisted of only five data points for July and only four data points for August.

The following tables describe the results for validation of the SSTEMP Model and those water temperatures found in water bodies in the Upper Owyhee Watershed. Overall the model has provided a reasonable estimate of predicting current conditions and establishing reasonable guidance for predicting water temperature changes by increasing the amount of shade.

Table D1. Validation Results for July 2000.

	Actual Measured	Predicted	Actual Measured	Predicted
	Daily Average	Daily Average	Daily Maximum	Daily Maximum
	C°	C^{o}	C°	C^{o}
Upper Deep Creek	19.7	19.4	28.1	24.8
Castle Creek	19.7	19.4	28.1	25.9
Upper Pole Creek	19.7	19.2	28.1	25.2
Middle Deep Creek	21.4	19.3	27.9	23.7
Red Canyon Creek	15.8	17.9	19.6	23.8
Average	20.1	19.3	28.1	24.9
		Average	Maximum	
Root Mean Square		0.5 °C	1.6°C	
Error				
Relative Error		2.6%	5.6%	

Table D2. Validation Results for August 2000.

	Actual Measured	Predicted	Actual Measured	Predicted
	Daily Average	Daily Average	Daily Maximum	Daily Maximum
	Co	C^{o}	Co	C^{o}
Upper Deep Creek	17.9	16.5	24.2	24.1
Castle Creek	18.1	17.2	27.7	25.5
Upper Pole Creek	20.1	17.0	24.3	24.7
Middle Deep	21.4	18.2	25.5	23.3
Creek				
Average	19.4	17.2	25.4	24.4
		Average	Maximum	
Root Mean Square		1.8°C	2.3°C	
Error				
Relative Error		9.3%	8.9%	

Examples of SSTEMP Model for Castle Creek

Table D3.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-) (joules/m²/sec)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
Mid-Pole-Cowboy Creeks to Deep Creek	13°C Max 9°C Avg.	June 1 through June	8.2	+122.43	34.4	34.4	0.0	32.1	Minimum Mean	10.7 14.4
F		30							Maximum	18.1
				+126.77	34.4	34.4	0.0	11.8	Minimum	9.8
									Mean	13.5
									Maximum	17.3
				+88.84	50.0	34.4	15.4	11.8	Minimum	9.8
									Mean	13.0
									Maximum	16.1
				+22.64	75.0	34.4	35.6	11.8	Minimum	10.0
									Mean	12.1
									Maximum	14.1
				-15.89	90.0	34.4	55.6	11.8	Minimum	10.0
									Mean	11.5
									Maximum	12.9
				-41.57	100.0	34.4	65.6	11.8	Minimum	10.1
									Mean	11.1
									Maximum	12.1
Bull Gulch	13°C Max	June 1	14.5	+402.09	7.7	0.9	6.8	24.4	Minimum	11.7
B, G and F	9°C Avg.	through June							Mean	16.2
	_	30							Maximum	20.1
				+416.55	2.3	0.4	1.9	10.9	Minimum	10.9
									Mean	15.9
									Maximum	20.9
				+293.98	50.0	0.4	49.6	10.9	Minimum	10.6
									Mean	13.8
									Maximum	17.1
				+229.73	75.0	0.4	74.6	10.9	Minimum	10.5
									Mean	12.7
									Maximum	14.9
				+191.18	90.0	0.4	89.6	10.9	Minimum	10.5
									Mean	12.0
									Maximum	13.5
				+165.48	100	0.4	99.6	10.9	Minimum	10.4
									Mean	11.5
									Maximum	12.6

Table D4.

Stream Name	Target	Model	Segment	Solar	%	%	%	Width/	Temperature	°C
Rosgen Channel Type	Temperature	Run Dates	Length	Radiation	Total	Topo	Veg	Depth	(24 hours)	
			(mi.)	Components	Shade	Shade	Shade	Ratio		
				24 hours						
				(+/-)						
				(joules/m ² /sec)						
Red Canyon Creek	13°C Max	June 1	13.2	+360.52	23.7	20.8	2.9	25.4	Minimum	8.6
A, B and F	9°C Avg.	through June							Mean	13.1
	_	30							Maximum	17.6
				+358.32	24.6	20.8	3.8	11.8	Minimum	7.8
									Mean	12.1
									Maximum	16.4
				+292.97	50.0	20.8	29.2	11.8	Minimum	8.2
									Mean	11.4
									Maximum	14.7
				+228.64	75.0	20.8	54.2	11.8	Minimum	8.6
									Mean	10.7
									Maximum	12.8
				+190.05	90.0	20.8	69.2	11.8	Minimum	8.9
									Mean	10.3
									Maximum	11.7
				+164.32	100.0	20.8	79.2	11.8	Minimum	9.1
									Mean	10.0
									Maximum	11.0
Lower Deep Creek	13°C Max	June 1	8.4	+129.12	34.4	34.4	0.0	104.0	Minimum	13.0
F [*]	9°C Avg.	through June							Mean	15.7
		30							Maximum	18.4
		•		+89.3	50.0	34.4	15.6	104.0	Minimum	12.7
									Mean	14.9
									Maximum	17.2
				+25.31	75.0	34.4	40.6	104.0	Minimum	12.1
									Mean	13.7
									Maximum	15.2
				-13.11	90.0	34.4	55.6	104.0	Minimum	11.8
									Mean	12.9
									Maximum	14.0
				-38.72	100.0	34.4	65.6	104.0	Minimum	11.6
									Mean	12.4
									Maximum	13.1

Table D5.

Stream Name	Target	Model	Segment	Solar	%	_%	%	Width/	Temperature	°C
Rosgen Channel Type	Temperature	Run Dates	Length (mi.)	Radiation Components 24 hours	Total Shade	Topo Shade	Veg Shade	Depth Ratio	(24 hours)	
				(+/-) (joules/m²/sec)						
Upper Dickshooter	13°C Max	June 1	11.7	+277.12	2.3	0.4	1.9	30.3	Minimum	10.5
Creek	9°C Avg.	through June							Mean	14.8
G, F		30							Maximum	19.1
				+279.06	2.3	0.4	1.9	13.3	Minimum	10.5
									Mean	14.8
									Maximum	19.2
				+156.69	50.0	0.4	49.6	13.3	Minimum	9.2
									Mean	12.2
									Maximum	15.1
				+92.54	75.0	0.4	74.6	13.3	Minimum	8.6
									Mean	10.6
									Maximum	12.7
				+54.05	90.0	0.4	89.6	13.3	Minimum	8.2
									Mean	9.7
									Maximum	11.1
				+28.39	100.0	0.4	99.6	13.3	Minimum	8.0
									Mean	9.0
		_							Maximum	10.0
Lower Dickshooter	13°C Max	June 1	13.0	+53.93	33.6	33.6	0.0	22.8	Minimum	7.1
Creek	9°C Avg.	through June							Mean	12.4
F		30							Maximum	17.6
				+54.56	33.6	33.6	0.0	11.9	Minimum	6.7
									Mean	11.7
									Maximum	16.7
				+12.46	50.0	33.6	16.4	11.9	Minimum	7.0
									Mean	11.0
									Maximum	14.9
				-51.76	75.0	33.6	38.4	11.9	Minimum	7.5
									Mean	9.8
					00.0	20.4		44.0	Maximum	12.2
				-90.28	90.0	33.6	53.4	11.9	Minimum	7.7
									Mean	10.6
				115.05	100.0	22.5	66.1	11.0	Maximum	9.2
				-115.97	100.0	33.6	66.4	11.9	Minimum	7.9
									Mean	8.7
									Maximum	9.6

Table D6.

Stream Name	Target	Model	Segment	Solar	%	%	%	Width/	Temperature	°C
Rosgen Channel Type	Temperature	Run Dates	Length	Radiation	Total	Topo	Veg	Depth	(24 hours)	
			(mi.)	Components	Shade	Shade	Shade	Ratio		
				24 hours						
				(+/-)						
				(joules/m ² /sec)						
Beaver Creek	13°C Max	June 1	8.7	+273.40	2.6	0.9	1.7	24.2	Minimum	7.8
A, B & G	9°C Avg.	through June							Mean	13.1
		30							Maximum	18.3
				+273.36	2.6	0.9	1.7	11.4	Minimum	7.1
									Mean	12.4
									Maximum	17.8
				+151.68	50.0	0.9	49.1	11.4	Minimum	7.3
									Mean	10.6
									Maximum	13.9
				+87.51	75.0	0.9	74.1	11.4	Minimum	7.5
									Mean	9.6
									Maximum	11.8
				+49.00	90.0	0.9	89.1	11.4	Minimum	7.6
									Mean	9.1
									Maximum	10.5
				+23.33	100.0	0.9	99.1	11.4	Minimum	7.7
									Mean	8.7
									Maximum	9.7

Table D7.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
				(joules/m²/sec)						
Mid-Pole-Cowboy	13°C Max	June 1	8.2	+141.67	34.4	34.4	0.0	27.6	Minimum	8.7
Creeks to Deep Creek	9°C Avg.	through June	0.2	1141.07	34.4	54.4	0.0	27.0	Mean	12.3
F	y crivg.	30							Maximum	16.0
_				+144.85	34.4	34.4	0.0	11.6	Minimum	8.4
									Mean	11.9
									Maximum	15.5
				+104.96	50.0	34.4	15.6	11.6	Minimum	8.3
									Mean	11.2
									Maximum	14.2
				+40.87	75.0	34.4	40.6	11.6	Minimum	8.2
									Mean	10.1
									Maximum	12.1
				+2.42	90.0	34.4	55.6	11.6	Minimum	8.1
									Mean	9.4
									Maximum	10.8
				-23.22	100.0	34.4	65.6	11.6	Minimum	8.1
									Mean	9.0
									Maximum	9.9
Bull Gulch	13°C Max	June 1	14.5	+191.66	34.4	34.4	0.0	24.3	Minimum	8.5
B, G and F	9°C Avg.	through June							Mean	12.3
		30							Maximum	16.2
				+191.66	34.4	34.4	0.0	14.0	Minimum	8.2
									Mean	12.1
									Maximum	16.0
				+151.71	50.0	34.4	15.6	14.0	Minimum	8.1
									Mean	11.3
				07.71			10.5	110	Maximum	14.6
				+87.54	75.0	34.4	40.6	14.0	Minimum	7.9
									Mean	10.1
				40.04	00.0	24.4	55.6	14.0	Maximum	12.3
				+49.04	90.0	34.4	55.6	14.0	Minimum	7.8
									Mean	9.3
				.02.27	100.0	24.4	65.6	14.0	Maximum	10.8
				+23.37	100.0	34.4	65.6	14.0	Minimum	7.8
									Mean	8.8
									Maximum	9.8

Table D8.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
				(joules/m²/sec)						
Mid-Pole Creek to	13°C Max	June 1	10.3	+195.36	14.5	11.2	3.3	28.1	Minimum	10.1
Deep Creek	9°C Avg.	through June							Mean	14.1
F		30							Maximum	18.1
				+195.84	16.1	11.2	4.8	12.7	Minimum	9.8
									Mean	13.8
									Maximum	17.8
				+108.82	50.0	11.2	38.8	12.7	Minimum	9.2
									Mean	12.0
									Maximum	14.9
				+44.73	75.0	11.2	63.8	11.7	Minimum	8.7
									Mean	10.7
									Maximum	12.6
				+6.28	90.0	11.2	78.8	11.7	Minimum	8.5
									Mean	9.8
									Maximum	11.2
				-19.36	100.0	11.2	88.8	11.7	Minimum	8.4
									Mean	9.3
		T							Maximum	10.2
Castle Creek	13°C Max	June 1	11.0	+274.04	2.4	1.4	1.0	25.4	Minimum	8.0
A, B, C and G	9°C Avg.	through June							Mean	13.1
		30							Maximum	18.2
				+272.50	2.6	1.4	1.2	12.9	Minimum	7.4
									Mean	12.5
									Maximum	17.6
				+151.83	50.0	1.4	48.6	12.9	Minimum	7.5
									Mean	10.7
				0= 40				12.0	Maximum	13.8
				+87.68	75.0	1.4	73.6	12.9	Minimum	7.6
									Mean	9.7
				40.10	00.0		00.6	12.0	Maximum	11.7
				+49.19	90.0	1.4	88.6	12.9	Minimum	7.7
									Mean	9.1
				22.52	100.0	1.1	00.5	12.0	Maximum	10.5
				+23.53	100.0	1.4	98.6	12.9	Minimum	7.7
									Mean	8.7
									Maximum	9.6

Table D9.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
				(+/-) (joules/m ² /sec)						
Hurry Back A, B and C	13°C Max 9°C Avg.	June 1 through June 30	11.2	+246.21	12.6	7.1	5.5	28.4	Minimum Mean Maximum	7.5 12.2 16.9
		30		+241.25	14.5	7.1	7.4	12.2	Minimum Mean Maximum	7.0 11.4 15.8
				+150.16	50.0	7.1	42.9	12.2	Minimum Mean Maximum	7.3 10.2 13.2
				+85.90	75.0	7.1	67.9	12.2	Minimum Mean Maximum	7.5 9.4 11.3
				+47.35	90.0	7.1	82.1	12.2	Minimum Mean Maximum	7.6 8.9 10.2
				+21.64	100.0	7.1	92.1	12.2	Minimum Mean Maximum	7.7 8.6 9.5
Nip and Tuck Creek A, B and C	13°C Max 9°C Avg.	June 1 through June 30	6.8	+242.46	14.1	7.1	7.0	22.9	Minimum Mean Maximum	6.5 11.5 16.5
				+239.20	15.4	7.1	8.3	11.8	Minimum Mean Maximum	6.0 10.8 15.7
				+150.23	50.0	7.1	42.9	11.8	Minimum Mean Maximum	6.7 9.9 13.1
				+85.89	75.0	7.1	67.9	11.8	Minimum Mean Maximum	7.2 9.2 11.3
				+47.42	90.0	7.1	82.9	11.8	Minimum Mean Maximum	7.4 8.8 10.2
				+21.72	100.0	7.1	92.9	11.8	Minimum Mean Maximum	7.6 8.5 9.5

Table D10.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-) (joules/m²/sec)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
Deep Creek to Current Cr. F	13°C Max 9°C Avg.	June 1 through June 30	5	+147.99	34.4	34.4	0.0	22.9	Minimum Mean Maximum	8.2 11.0 13.7
1		30		+149.59	34.4	34.4	0.0	12.9	Minimum Mean Maximum	8.2 10.6 13.1
				+109.77	50.0	34.4	15.6	12.9	Minimum Mean Maximum	8.3 10.3 12.3
				+45.69	75.0	34.4	40.6	12.9	Minimum Mean Maximum	8.6 9.9 11.1
				+7.24	90.0	34.4	55.6	`12.9	Minimum Mean Maximum	8.7 9.6 10.4
				-18.40	100.0	34.4	65.6	12.9	Minimum Mean Maximum	8.8 9.4 9.9
Current Creek A, B and C	13°C Max 9°C Avg.	June 1 through June 30	13.5	+191.13	34.4	34.4	0.0	25.8	Minimum Mean Maximum	7.7 11.3 14.9
				+191.13	34.4	34.4	0.0	11.8	Minimum Mean Maximum	7.4 10.8 14.2
				+151.13	50.0	34.4	15.6	11.8	Minimum Mean Maximum	7.5 10.3 13.1
				+86.88	75.0	34.4	40.6	11.8	Minimum Mean Maximum	7.7 9.4 11.2
				+48.32	90.0	34.4	55.6	11.8	Minimum Mean Maximum	7.7 8.9 10.1
				+22.62	100.0	34.4	65.6	11.8	Minimum Mean Maximum	7.8 8.6 9.4

Table D11.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length	Solar Radiation	% Total	% Topo	% Veg	Width/ Depth	Temperature (24 hours)	°C
			(mi.)	Components	Shade	Shade	Shade	Ratio		
				24 hours						
				(+/-)						
7 10 0 1	10007.1		12.2	(joules/m²/sec)	211	2.1.1	0.0	2.1.2	2.51	
Red Canyon Creek	13°C Max	June 1	13.2	+191.21	34.4	34.4	0.0	24.2	Minimum	7.7
A, B and F	9°C Avg.	through June							Mean	11.5
		30		101.01	24.4	24.4	0.0	1.1.0	Maximum	15.3
				+191.21	34.4	34.4	0.0	14.9	Minimum	7.4
									Mean	11.2
				151.00	50.0	21.1	15.5	1.1.0	Maximum	15.0
				+151.22	50.0	34.4	15.6	14.9	Minimum	7.5
									Mean	10.6
				.06.00	75.0	24.4	10.6	140	Maximum	13.7
				+86.89	75.0	34.4	40.6	14.9	Minimum Mean	7.6 9.6
									Maximum	9.0
				+48.44	00.0	34.4	55.6	14.9	Minimum	7.7
				+48.44	90.0	34.4	33.0	14.9	Mean	9.0
									Maximum	10.4
				+22.74	100.0	34.4	65.6	14.9	Minimum	7.7
				T22.74	100.0	34.4	05.0	14.9	Mean	8.7
									Maximum	9.6
Lower Deep Creek	13°C Max	June 1	8.4	+148.57	34.4	34.4	0.0	100	Minimum	8.8
F	9°C Avg.	through June	0.4	1140.57	34.4	54.4	0.0	100	Mean	11.9
•	y Chrys.	30							Maximum	15.0
	l .			+108.76	50.0	34.4	15.6	100	Minimum	8.7
									Mean	11.2
									Maximum	13.8
				+44.80	75.0	34.4	40.6	100	Minimum	8.5
									Mean	10.1
									Maximum	11.8
				+6.42	90.0	34.4	55.6	100	Minimum	8.3
									Mean	9.5
									Maximum	10.6
				-19.16	100.0	34.4	65.6	100	Minimum	8.2
									Mean	9.0
									Maximum	9.8

Table D12.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-) (joules/m²/sec)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
Middle Deep Creek Nickel Cr. To Pole Creek F	13°C Max 9°C Avg.	June 1 through June 30	5	+159.46	34.4	34.4	0.0	27.0	Minimum Mean Maximum	7.8 10.6 13.4
				+162.95	34.4	34.4	0.0	12.8	Minimum Mean Maximum	7.7 10.2 12.6
				+123.10	50.0	34.4	15.6	12.8	Minimum Mean Maximum	8.0 9.9 11.9
				+59.09	75.0	34.4	55.6	12.8	Minimum Mean Maximum	8.3 9.6 10.8
				+20.69	90.0	34.4	65.6	12.8	Minimum Mean Maximum	8.5 9.3 10.1
				-4.92	100.0	34.4	75.6	12.8	Minimum Mean Maximum	8.6 9.2 9.7
Nickel Creek A, B, C and F	13°C Max 9°C Avg.	June 1 through June 30	9.7	+190.91	34.4	34.4	0.0	29.1	Minimum Mean Maximum	7.3 11.3 15.3
				+190.91	34.4	34.4	0.0	11.5	Minimum Mean Maximum	6.8 10.6 14.5
				+150.89	50.0	34.4	15.6	11.5	Minimum Mean Maximum	7.0 10.1 13.3
				+86.60	75.0	34.4	40.6	11.5	Minimum Mean Maximum	7.3 9.4 11.4
				+48.02	90.0	34.4	55.6	11.5	Minimum Mean Maximum	7.5 8.9 10.3
				+22.31	100.0	34.4	65.6	11.5	Minimum Mean Maximum	7.7 8.6 9.5

Table D13.

Stream Name	Target	Model	Segment	Solar	%	%	%	Width/	Temperature	°C
Rosgen Channel Type	Temperature	Run Dates	Length	Radiation	Total	Торо	Veg	Depth	(24 hours)	C
<i>J</i> 1	•		(mi.)	Components	Shade	Shade	Shade	Ratio	,	
			, ,	24 hours						
				(+/-)						
				(joules/m²/sec)						
Middle Deep, Current	13°C Max	June 1	15.8	+162.92	34.4	34.4	0.0	24.9	Minimum	9.4
Creek to Nickel	9°C Avg.	through June							Mean	12.1
Creek	, o 11, g.	30							Maximum	14.8
F									1,14,11114111	1
•				+166.17	34.4	34.4	0.0	13.0	Minimum	9.2
									Mean	11.6
									Maximum	14.0
Ī				+126.39	50.0	34.4	15.6	13.0	Minimum	9.0
									Mean	11.0
									Maximum	13.0
				+62.36	75.0	34.4	40.6	13.0	Minimum	8.8
									Mean	10.1
									Maximum	11.4
				+23.94	90.0	34.4	55.6	13.0	Minimum	8.6
									Mean	9.5
									Maximum	10.4
				-1.67	100.0	34.4	65.6	13.0	Minimum	8.5
									Mean	9.1
									Maximum	9.7
Upper Pole Creek	13°C Max	June 1	6.8	+241.67	14.7	1.7	13.0	22.4	Minimum	8.5
A, B, C and F	9°C Avg.	through June							Mean	13.1
		30							Maximum	17.6
				+238.59	15.9	1.7	14.2	11.5	Minimum	8.1
									Mean	12.6
									Maximum	17.2
				+150.83	50.0	1.7	48.3	11.5	Minimum	7.9
									Mean	11.1
									Maximum	14.2
				+86.53	75.0	1.7	73.3	11.5	Minimum	7.8
									Mean	9.9
									Maximum	12.0
				+47.95	90.0	1.7	88.3	11.5	Minimum	7.8
									Mean	9.2
									Maximum	10.6
				+22.24	100.0	1.7	98.3	11.5	Minimum	7.8
									Mean	8.7
									Maximum	9.7

Table D14.

Stream Name	Target	Model	Segment	Solar	% T. ()	%	%	Width/	Temperature	°C
Rosgen Channel Type	Temperature	Run Dates	Length (mi.)	Radiation Components	Total Shade	Topo Shade	Veg Shade	Depth Ratio	(24 hours)	
			(1111.)	24 hours	Shade	Shade	Shade	Kauo		
				(+/-)						
				(joules/m ² /sec)						
Nip and Tuck	22°C Max	July 1	6.8	+568.79	16.1	11.5	4.6	25.4	Minimum	10.4
A, B and G	19°C Avg.	through July	0.0	1300.77	10.1	11.5	4.0	25.4	Mean	17.6
A, D and G	1) CAVg.	31							Maximum	24.7
		31		+566.01	17.2	11.5	5.7	13.3	Minimum	9.0
				+300.01	17.2	11.5	3.7	15.5	Mean	16.6
									Maximum	24.1
				+483.94	50.0	11.5	38.5	13.3	Minimum	9.0
				T403.74	30.0	11.5	36.3	13.3	Mean	15.4
									Maximum	21.9
				+421.43	75.0	11.5	63.5	13.3	Minimum	9.1
				T421.43	75.0	11.5	05.5	15.5	Mean	14.6
									Maximum	20.1
				+383.92	90.0	11.5	73.5	13.3	Minimum	9.2
				1303.72	70.0	11.5	73.3	13.3	Mean	14.0
									Maximum	18.9
				+358.92	100.0	11.5	88.5	13.3	Minimum	9.2
					100.0	11.0	30.6	10.0	Mean	13.7
									Maximum	18.1
Current-Stoneman	22°C Max	July 1	8.9	+523.40	34.9	34.9	0.0	25.3	Minimum	12.0
Creeks	19°C Avg.	through July							Mean	17.8
A, B, C and F	->8.	31							Maximum	23.5
, ,		l .		+523.40	34.9	34.9	0.0	14.2	Minimum	11.2
									Mean	17.2
									Maximum	23.1
				+485.58	50.0	34.9	15.1	14.2	Minimum	11.1
									Mean	16.7
									Maximum	22.1
				+423.07	75.0	34.9	40.1	14.2	Minimum	10.9
									Mean	15.6
									Maximum	20.3
				+385.56	90.0	34.9	55.1	14.2	Minimum	10.8
									Mean	15.0
									Maximum	19.2
				+360.55	100.0	34.9	65.1	14.2	Minimum	10.8
									Mean	14.6
									Maximum	18.5

Table D15.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
				(+/-) (joules/m²/sec)						
Nickel Creek	22°C Max	July 1	9.7	+520.37	34.9	34.9	0.0	23.3	Minimum	11.0
A, B, G and F	19°C Avg.	through July	<i>y.,</i>	1320.37	31.7	31.5	0.0	23.3	Mean	17.3
11, 2, 3 und 1	1, 0,11, 8.	31							Maximum	23.6
				+520.37	34.9	34.9	0.0	13.7	Minimum	10.2
									Mean	16.7
									Maximum	23.2
				+482.53	50.0	34.9	15.1	13.7	Minimum	10.1
									Mean	16.1
									Maximum	22.2
				+419.98	75.0	34.9	40.1	13.7	Minimum	10.0
									Mean	15.2
									Maximum	20.4
				+382.45	90.0	34.9	55.1	13.7	Minimum	10.0
									Mean	14.6
									Maximum	19.3
				+357.43	100.0	34.9	65.1	13.7	Minimum	10.0
									Mean	14.2
									Maximum	18.5
Upper Pole Creek	22°C Max	July 1	6.8	+566.77	16.3	1.8	14.5	26.0	Minimum	13.2
B, C and G	19°C Avg.	through July							Mean	19.2
		31							Maximum	25.2
				+564.48	17.2	1.8	15.4	11.9	Minimum	12.3
									Mean	18.6
									Maximum	24.8
				+482.33	50.0	1.8	48.2	11.9	Minimum	11.8
									Mean	17.2
									Maximum	22.7
				+419.78	75.0	1.8	73.2	11.9	Minimum	11.5
									Mean	16.2
									Maximum	20.9
				+382.25	90.0	1.8	88.2	11.9	Minimum	11.4
									Mean	15.6
				255.22	100.0	1.0	00.2	11.0	Maximum	19.8
				+357.22	100.0	1.8	98.2	11.9	Minimum	11.3
									Mean	15.1
									Maximum	19.0

Table D16.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
			(1111.)	24 hours (+/-) (joules/m²/sec)	Shade	Shace	Shace	Tuno		
Camas Creek	22°C Max	July 1	8.9	+588.57	8.5	0.9	7.6	26.0	Minimum	13.4
B, C and G	19°C Avg.	through July	0.5	1000.07	0.0	0.5	7.0	20.0	Mean	19.6
B, C and C	17 0 11, g.	31							Maximum	25.8
	L	31		+587.65	8.9	0.9	8.0	15.1	Minimum	12.7
				1307.03	0.5	0.5	0.0	13.1	Mean	19.2
									Maximum	25.7
				+484.87	50.0	0.9	49.9	15.1	Minimum	12.0
				1404.07	30.0	0.5	47.7	13.1	Mean	17.6
									Maximum	23.1
				+422.33	75.0	0.9	74.1	15.1	Minimum	11.7
				1422.33	75.0	0.5	74.1	13.1	Mean	16.5
									Maximum	21.4
				+384.80	90.0	0.9	89.1	15.1	Minimum	11.5
				1304.00	70.0	0.7	05.1	13.1	Mean	15.9
									Maximum	20.2
				+359.76	100.0	0.9	99.1	15.1	Minimum	11.4
				1337.70	100.0	0.5	<i>>></i> .1	13.1	Mean	15.4
									Maximum	19.5
Camel Creek	22°C Max	July 1		+567.07	16.6	7.3	9.3	24.3	Minimum	13.9
A, B, C and G	19°C Avg.	through July		1007107	10.0	7.10	7.0	25	Mean	19.5
11, 2, 0 und 0	1, 011, 8.	31							Maximum	25.2
	<u> </u>	<u> </u>		+565.91	17.1	7.3	9.8	12.3	Minimum	13.3
						,			Mean	19.2
									Maximum	25.1
				+483.66	50.0	7.3	42.7	12.3	Minimum	12.7
						,	1		Mean	17.8
									Maximum	22.9
				+421.17	75.0	7.3	64.7	12.3	Minimum	12.3
									Mean	16.7
									Maximum	21.2
				+383.67	90.0	7.3	82.7	12.3	Minimum	12.1
									Mean	16.1
									Maximum	20.1
				+358.67	100.0	7.3	92.7	12.3	Minimum	11.9
						,	,		Mean	15.6
									Maximum	19.3

Table D17.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
				(+/-)						
				(joules/m²/sec)						
Castle Creek	22°C Max	Ju1y 1	11.0	+607.76	2.0	0.4	1.6	24.5	Minimum	12.8
A, B, C and G	19°C Avg.	through July							Mean	19.4
		31							Maximum	25.9
				+607.57	2.1	0.4	1.7	12.0	Minimum	11.7
									Mean	18.6
									Maximum	25.5
				+487.97	50.0	0.4	49.6	12.0	Minimum	11.2
									Mean	16.8
									Maximum	22.5
				+425.56	75.0	0.4	74.6	12.0	Minimum	11.0
									Mean	15.8
									Maximum	20.7
				+388.12	90.0	0.4	89.6	12.0	Minimum	10.9
									Mean	15.2
									Maximum	19.6
				+363.16	100.0	0.4	99.6	12.0	Minimum	10.8
									Mean	14.8
									Maximum	18.8
Beaver Creek	22°C Max	July 1	8.7	+607.14	2.1	0.4	1.7	26.1	Minimum	12.6
B, C and G	19°C Avg.	through July							Mean	19.3
,	C	31							Maximum	26.0
				+607.10	2.1	0.4	1.7	11.1	Minimum	11.1
									Mean	18.4
									Maximum	25.6
				+487.45	50.0	0.4	49.6	11.1	Minimum	10.7
									Mean	16.6
									Maximum	22.5
				+425.02	75.0	0.4	74.6	11.1	Minimum	10.5
									Mean	15.6
									Maximum	20.8
				+387.56	90.0	0.4	89.6	11.1	Minimum	10.5
									Mean	15.0
									Maximum	19.6
				+362.59	100.0	0.4	99.6	11.1	Minimum	10.4
					100.0		77.0	11.1	Mean	11.6
									Maximum	18.8

Table D18.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-) (joules/m²/sec)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
Bull Gulch B and F	22°C Max 19°C Avg.	Ju1y 1 through July 31	14.5	+525.24	34.9	34.9	0.0	23.5	Minimum Mean Maximum	13.1 18.6 24.1
				+525.24	34.9	34.9	0.0	11.1	Minimum Mean Maximum	12.3 18.1 24.0
				+487.55	50.0	34.9	15.1	11.1	Minimum Mean Maximum	12.1 17.5 23.0
				+425.13	75.0	34.9	40.1	11.1	Minimum Mean Maximum	11.7 16.5 21.2
				+387.67	90.0	34.9	55.1	11.1	Minimum Mean Maximum	11.5 15.8 20.1
				+362.70	100.0	34.9	65.1	11.1	Minimum Mean Maximum	11.4 15.4 19.4
Upper Dickshooter Creek B and C	22°C Max 19°C Avg.	July 1 through July 31		+591.40	8.6	3.5	5.0	22.2	Minimum Mean Maximum	14.1 19.9 25.8
				+591.20	8.6	3.5	5.1	13.9	Minimum Mean Maximum	13.8 19.7 25.7
				+487.97	50.0	3.5	46.5	13.9	Minimum Mean Maximum	12.9 18.0 23.1
				+425.56	75.0	3.5	71.5	13.9	Minimum Mean Maximum	12.5 16.9 21.4
				+388.12	90.0	3.5	86.5	13.9	Minimum Mean Maximum	12.3 16.3 20.3
				+363.16	100.0	3.5	96.5	13.9	Minimum Mean Maximum	12.1 15.8 19.5

Table D19.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
				(joules/m²/sec)						
Bull Gulch	22°C Max	July 1	14.5	+525.24	34.9	34.9	0.0	23.5	Minimum	13.1
B and F	19°C Avg.	through July							Mean	18.6
	l	31							Maximum	24.1
		I.		+525.24	34.9	34.9	0.0	11.1	Minimum	12.3
									Mean	18.1
									Maximum	24.0
				+487.55	50.0	34.9	15.1	11.1	Minimum	12.1
									Mean	17.5
									Maximum	23.0
				+425.13	75.0	34.9	40.1	11.1	Minimum	11.7
									Mean	16.5
									Maximum	21.2
				+387.67	90.0	34.9	55.1	11.1	Minimum	11.5
									Mean	15.8
									Maximum	20.1
				+362.70	100.0	34.9	65.1	11.1	Minimum	11.4
									Mean	15.4
									Maximum	19.4
Upper Dickshooter	22°C Max	July 1		+591.40	8.6	3.5	5.0	22.2	Minimum	14.1
Creek	19°C Avg.	through July							Mean	19.9
B and C		31							Maximum	25.8
				+591.20	8.6	3.5	5.1	13.9	Minimum	13.8
									Mean	19.7
									Maximum	25.7
				+487.97	50.0	3.5	46.5	13.9	Minimum	12.9
									Mean	18.0
									Maximum	23.1
				+425.56	75.0	3.5	71.5	13.9	Minimum	12.5
									Mean	16.9
									Maximum	21.4
				+388.12	90.0	3.5	86.5	13.9	Minimum	12.3
									Mean	16.3
									Maximum	20.3
				+363.16	100.0	3.5	96.5	13.9	Minimum	12.1
									Mean	15.8
									Maximum	19.5

Table D20.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length	Solar Radiation	% Total	% Topo	% Veg	Width/ Depth	Temperature (24 hours)	°C
Rosgen Channel Type	Temperature	Run Dates	(mi.)	Components 24 hours	Shade	Shade	Shade	Ratio	(24 110013)	
				(+/-) (joules/m²/sec)						
Deep Creek, Hurry	22°C Max	Ju1y 1	5	+11.36	34.9	34.9	0.0	24.0	Minimum	14.7
Back to Current Creek	19°C Avg.	through July		111.00	5	5	0.0	20	Mean	19.3
G and F	19 0 11 / g.	31							Maximum	23.9
Model Run does not			l	+24.83	34.9	34.9	0.0	12.3	Minimum	14.6
Show Water									Mean	19.1
Temperature									Maximum	23.6
Reductions Upstream										
				+15.93	50.0	34.9	15.1	12.3	Minimum	14.5
									Mean	22.7
									Maximum	18.6
				+0.46	75.0	34.9	40.1	12.3	Minimum	14.2
									Mean	17.8
				0.26	00.0	24.0	55.1	12.2	Maximum	21.2
				-9.26	90.0	34.9	55.1	12.3	Minimum	14.2
									Mean	17.2
				-15.92	100	34.9	65.1	12.3	Maximum Minimum	20.3
				-13.92	100	34.9	03.1	12.5	Mean	16.9
									Maximum	19.7
Deep Creek, Hurry	22°C Max	July 1	5						Minimum	15.2
Back to Current Creek	19°C Avg.	through July	3						Mean	19.8
G and F	1) Chvg.	31							Maximum	24.2
Model Run Shows Water	J	31	I						Minimum	15.8
Temperature Reduction									Mean	19.9
Achieved Upstream									Maximum	24.1
									Minimum	15.6
									Mean	19.4
									Maximum	23.3
									Minimum	15.4
									Mean	18.6
									Maximum	21.8
									Minimum	15.3
									Mean	18.1
									Maximum	21.0
									Minimum	15.2
									Mean	17.8
									Maximum	20.4

Table D21.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-) (joules/m²/sec)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
Red Canyon Creek A, B and F	22°C Max 19°C Avg.	Ju1y 1 through July 31	13.2	+523.71	34.9	34.9	0.0	24.1	Minimum Mean Maximum	12.0 17.9 23.8
				+523.71	34.9	34.9	0.0	12.6	Minimum Mean Maximum	11.1 17.2 23.4
				+485.90	50.0	34.9	15.1	12.6	Minimum Mean Maximum	11.0 16.6 22.3
				+423.40	75.0	34.9	40.1	12.6	Minimum Mean Maximum	10.8 15.7 20.6
				+385.90	90.0	34.9	55.1	12.6	Minimum Mean Maximum	10.7 15.1 19.4
				+360.90	100.0	34.9	65.1	12.6	Minimum Mean Maximum	10.7 11.7 18.7

Table D22.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-) (joules/m²/sec)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
Camel Creek A, B and G	13°C Max 9°C Avg.	June 1 through June	4.0	+237.91	16.3	11.2	5.1	26.6	Minimum Mean	7.9 12.7
		30		+233.74	17.9	11.2	6.7	11.9	Maximum Minimum Mean Maximum	17.5 8.0 12.8 17.5
				+151.22	50.0	11.2	38.8	11.9	Minimum Mean Maximum	7.9 11.2 14.6
				+86.89	75.0	11.2	63.8	11.9	Minimum Mean Maximum	7.8 10.0 12.3
				+48.44	90.0	11.2	78.8	11.9	Minimum Mean Maximum	7.7 9.3 10.8
				+22.74	100.0	11.2	88.8	11.9	Minimum Mean Maximum	7.7 8.8 9.8
Camas Creek A, B and G	13°C Max 9°C Avg.	June 1 through June 30	8.9	+260.69	7.3	0.9	6.4	23.6	Minimum Mean Maximum	9.2 13.8 18.5
				+259.21	7.9	0.9	7.0	13.2	Minimum Mean Maximum	8.9 13.6 18.2
				+150.92	50.0	0.9	49.1	13.2	Minimum Mean Maximum	8.3 11.5 14.6
				+86.64	75.0	0.9	74.1	13.2	Minimum Mean Maximum	8.0 10.2 12.2
				+48.07	90.0	0.9	89.1	13.2	Minimum Mean Maximum	7.9 9.3 10.8
				+22.35	100.0	0.9	99.1	13.2	Maximum Minimum Mean Maximum	7.8 8.8 9.8

Table D23.

Stream Name Rosgen Channel Type	Target Temperature	Model Run Dates	Segment Length (mi.)	Solar Radiation Components 24 hours (+/-) (joules/m²/sec)	% Total Shade	% Topo Shade	% Veg Shade	Width/ Depth Ratio	Temperature (24 hours)	°C
Deep Creek, Current to Pole Creek F	13°C Max 9°C Avg.	June 1 through June 30	15.8	+145.86	34.4	34.4	0.0	27.6	Minimum Mean Maximum	9.5 12.3 15.1
	l			+149.64	34.4	34.4	0.0	11.6	Minimum Mean Maximum	9.3 11.7 14.2
				+109.78	50.0	34.4	15.6	11.6	Minimum Mean Maximum	9.1 11.1 13.2
				+45.75	75.0	34.4	40.6	11.6	Minimum Mean Maximum	8.9 10.2 11.5
				+7.34	90.0	34.4	55.6	11.6	Minimum Mean Maximum	8.7 9.6 10.5
				-18.27	100.0	34.4	66.6	11.6	Minimum Mean Maximum	8.6 9.2 9.8
Upper Pole Creek A, B, C and F	13°C Max 9°C Avg.	June 1 through June 30	6.8	+241.66	14.7	1.7	13.0	22.4	Minimum Mean Maximum	8.5 13.1 17.6
				+238.59	15.9	1.7	14.2	11.5	Minimum Mean Maximum	8.1 12.6 17.2
				+150.83	50.0	1.7	48.3	11.5	Minimum Mean Maximum	7.9 11.1 14.2
				+86.53	75.0	1.7	73.3	11.5	Minimum Mean Maximum	7.8 9.9 12.0
				+47.95	90.0	1.7	88.3	11.5	Minimum Mean Maximum	7.8 9.2 10.6
				+22.24	100.0	1.7	98.3	11.5	Minimum Mean Maximum	7.8 8.7 9.7

Table D24. Discharge-Load Calculations

Sediment Dis	scharge					
Castle Creek	Load Capacity	Load Capacity	Load Capacity	Load Capacity	Load Capacity	Load Capacity
Mean annual Discharge	80 mg/l	^@ 80 mg/l	50 mg/l	^@ 50 mg/l	^@ 80 mg/l	^@ 50 mg/l
cfs	mg/l	lbs/day	mg/l	lbs/day	tons/year	tons/year
11.8	80	2.3E+03	50	1.44E+03	1.54E+05	9.61E+04
Deep Creek						
Mean annual Discharge	Load Capacity 80 mg/l	Load Capacity ^@ 80 mg/l	Load Capacity 50 mg/l	Load Capacity ^@ 50 mg/l	Load Capacity ^@ 80 mg/l	Load Capacity ^@ 50 mg/l
cfs	mg/l	lbs/day	mg/l	lbs/day	tons/year	tons/year
52.03	80	1.0E+04	50	6.36E+03	6.78E+05	4.24E+05
Blue Creek	Load	Load	Load	Load	Load	Load
Mean annual Discharge	Capacity 80 mg/l	Capacity ^@ 80 mg/l	Capacity 50 mg/l	Capacity ^@ 50 mg/l	Capacity ^@ 80 mg/l	Capacity ^@ 50 mg/l
cfs	mg/l	lbs/day	mg/l	lbs/day	tons/year	tons/year
6.74	80	1.3E+03	50	8.24E+02	8.79E+04	5.49E+04
Juniper Creek						
	Load	Load	Load	Load	Load	Load
Mean annual Discharge	Capacity 80 mg/l	Capacity ^@ 80 mg/l	Capacity 50 mg/l	Capacity ^@ 50 mg/l	Capacity ^@ 80 mg/l	Capacity ^@ 50 mg/l
cfs	mg/l	lbs/day	mg/l	lbs/day	tons/year	tons/year
1.96	80	3.84E+02	50	2.40E+02	2.55E+04	1.60E+04

Table D25. Discharge-Load Calculations

Reverse load Analysis Tons to mg/l

rng/i												
Deep Creek												
	Low Yeild	Low Yeild	Low Yeild	Low Yeild	Conversion	mg sec	Flow	mg/cubic foot	Concentration			
	Bank Erosion	Bank Erosion	Bank Erosion	Bank Erosion	kg to mg							
					1E-06 or							
	tons/year	tons/day	kg/day	mg/day	0.000001				mg/l			
	3420.00	9.4	8498.5	8.50E+09	1.00E-06	98362	52	1891.57	66.8			
D O		1	Т	1	1	1		T	Т	1	1	ı
Deep Creek		Load Capacity	Conversion	mg/cubic foot	Conversion	Kg/cf	Conversion	Sediment load	Conversion	Tons per	Number of	Tons/year
	Mean annual	Concentration	Factor		mg to kg		seconds/day	at kg/day	kg to tons	day	Days/year	
	Discharge		cubic feet to		1E-06 or		,	İ	1kg =	ĺ	, ,	
	cfs	mg/l	liters		0.000001				0.0011 tons		365	
	52	66.8	28.312	9.84E+04	1.00E-06	9.84E-02	86400	8.50E+03	0.0011	9.35E+0 0	365	3412
Deep Creek												
	High Yield	High Yield	High Yield	High Yield	Conversion	mg sec	Flow	mg/cubic foot	Concentration			
	Bank Erosion	Bank Erosion	Bank Erosion	Bank Erosion								
					1E-06 or							
	tons/year	tons/day	kg/day	mg/day	0.000001				mg/l			
	5010000	1510	1000100	1 105 11	1 005 00	1010011		04004.50	100==			
	56196.00	154.0	139643.2	1.40E+11	1.00E-06	1616241	52	31081.56	1097.7			
Deep Creek		1		1								
Deep Oreek		Load Capacity	Conversion	mg/cubic foot	Conversion	Kg/cf	Conversion	Sediment load	Conversion	Tons per	Number of	Tons/year
	Mean annual		Factor		mg to kg		seconds/day	at kg/day	kg to tons	day	Days/year	
	Discharge		cubic feet to		1E-06 or		,	<u> </u>	1kg =			
	cfs	mg/l	liters		0.000001				0.0011 tons		365	
	52	1097.7	28.312	1.62E+06	1.00E-06	1.62E+0 0	86400	1.40E+05	0.0011	1.54E+0 2	365	56061
					1			1				

Table D26. Discharge-Load Calculations

Reverse load Analysis Tons to mg/l

Ü												
Castle Creek	(
	Low Yeild	Low Yeild	Low Yeild	Low Yeild	Conversion	mg sec	Flow	mg/cubic foot	Concentration			
	Bank Erosion	Bank Erosion	Bank Erosion	Bank Erosion	kg to mg							
					1E-06 or							
	tons/year	tons/day	kg/day	mg/day	0.000001				mg/l			
	156.00	0.4	387.6	3.88E+08	1.00E-06	4487	11.8	380.23	13.4			
Castle Creek	(
		Load Capacity	Conversion	mg/cubic foot		Kg/cf	Conversion	Sediment load	Conversion	Tons per	Number of	Tons/yea
	Mean annual	Concentration	Factor		mg to kg		seconds/day	at kg/day	kg to tons	day	Days/year	
	Discharge		cubic feet to		1E-06 or				1kg =			
	cfs	mg/l	liters		0.000001				0.0011 tons		365	
	11.8	13.4	28.312	4.49E+03	1.00E-06	4.49E-03	86400	3.88E+02	0.0011	4.26E-01	365	156
Castle Creek	(
	High Yield	High Yield	High Yield	High Yield	Conversion	mg sec	Flow	mg/cubic foot	Concentration		İ	
	Bank Erosion	Bank Erosion	Bank Erosion	Bank Erosion	kg to mg							
					1E-06 or							
	tons/year	tons/day	kg/day	mg/day	0.000001				mg/l			
	2580.00	7.1	6411.1	6.41E+09	1.00E-06	74203	11.8	6288.37	222.1			
-												
Castle Creek	(
		Load Capacity	Conversion	mg/cubic foot	Conversion	Kg/cf	Conversion	Sediment load	Conversion	Tons per	Number of	Tons/year
	Mean annual		Factor		mg to kg		seconds/day	at kg/day	kg to tons	day	Days/year	
	Discharge		cubic feet to		1E-06 or				1kg =			
	cfs	mg/l	liters		0.000001				0.0011 tons		365	
	11.8	222.1	28.312	7.42E+04	1.00E-06	7.42E-02	86400	6.41E+03	0.0011	7.05E+00	365	2574
1	1	1	1	1	1	I	1	1	ı	I	i .	

Table D27. Discharge-Load Calculations

Reverse load Analysis Tons to mg/l

Uniper Creek
Bank Erosion Discharge Conversion Conversio
Te-06 or Te-06 or
Te-06 or Te-06 or
A92.00
Juniper Creek Load Capacity Conversion mg/cubic foot Conversion Kg/cf Conversion Sediment load Conversion Tons per Number of Mean annual Concentration Factor mg to kg seconds/day at kg/day kg to tons day Days/year Discharge cubic feet to 1E-06 or 1kg = 1kg = 0.0011 tons 365 cfs mg/l liters 0.000001 0.0011 tons 365 2 249.9 28.312 1.41E+04 1.00E-06 1.41E-02 86400 1.22E+03 0.0011 1.34E+00 365
Juniper Creek Load Capacity Conversion mg/cubic foot Conversion Kg/cf Conversion Sediment load Conversion Tons per Number of Mean annual Concentration Factor mg to kg seconds/day at kg/day kg to tons day Days/year Discharge cubic feet to 1E-06 or 1kg = 1kg = 0.0011 tons 365 cfs mg/l liters 0.000001 0.0011 tons 365 2 249.9 28.312 1.41E+04 1.00E-06 1.41E-02 86400 1.22E+03 0.0011 1.34E+00 365
Load Capacity Conversion mg/cubic foot Conversion Kg/cf Conversion Sediment load Conversion Tons per Number of Mean annual Concentration Factor mg to kg seconds/day at kg/day kg to tons day Days/year Discharge cubic feet to 1E-06 or 1kg = cfs mg/l liters 0.000001 0.0011 tons 365
Load Capacity Conversion mg/cubic foot Conversion Kg/cf Conversion Sediment load Conversion Tons per Number of Mean annual Concentration Factor mg to kg seconds/day at kg/day kg to tons day Days/year Discharge cubic feet to 1E-06 or 1kg = cfs mg/l liters 0.000001 0.0011 tons 365
Load Capacity Conversion mg/cubic foot Conversion Kg/cf Conversion Sediment load Conversion Tons per Number of Mean annual Concentration Factor mg to kg seconds/day at kg/day kg to tons day Days/year Discharge cubic feet to 1E-06 or 1kg = cfs mg/l liters 0.000001 0.0011 tons 365
Load Capacity Conversion mg/cubic foot Conversion Kg/cf Conversion Sediment load Conversion Tons per Number of Mean annual Concentration Factor mg to kg seconds/day at kg/day kg to tons day Days/year Discharge cubic feet to 1E-06 or 1kg = cfs mg/l liters 0.000001 0.0011 tons 365
Mean annual Discharge Cubic feet to Cfs Items 1.41E+04 1.00E-06 1.41E-02 86400 1.22E+03 0.0011 1.34E+00 365
Discharge
cfs mg/l liters 0.000001 0.0011 tons 365 2 249.9 28.312 1.41E+04 1.00E-06 1.41E-02 86400 1.22E+03 0.0011 1.34E+00 365
2 249.9 28.312 1.41E+04 1.00E-06 1.41E-02 86400 1.22E+03 0.0011 1.34E+00 365
Lupipor Crook
Lupipor Crook
luningr Crook
Juliper Creek
High Yield High Yield High Yield Conversion mg sec Flow mg/cubic foot Concentration
Bank Erosion Bank
1E-06 or
tons/year tons/day kg/day mg/day 0.000001 mg/l
tonoryear tonoracy ngacy ingular tonoracy ngacy ingular ingular
8100.00 22.2 20127.9 2.01E+10 1.00E-06 232962 2 116481.16 4113.8
0100.00 22.2 20121.0 1.002.00 202.002 2 110401.10 4110.00
Juniper Creek
Load Capacity Conversion mg/cubic foot Conversion Kg/cf Conversion Sediment load Conversion Tons per Number of
Mean annual Factor mg to kg seconds/day at kg/day kg to tons day Days/year
Discharge cubic feet to 1E-06 or 1kg = 1kg = 1
cfs mg/l liters 0.000001 0.0011 tons 365
CTS mg/l liters 0.000001 0.0011 tons 365

Table D28. Discharge-Load Calculations

Reverse load Analysis Tons to mg/l

Blue Creek												
	Low Yeild	Low Yeild	Low Yeild	Low Yeild	Conversion	mg sec	Flow	mg/cubic foot	Conce	ntration		
	Bank Erosion	Bank Erosion	Bank Erosion	Bank Erosion	kg to mg							
					1E-06 or							
	tons/year	tons/day	kg/day	mg/day	0.000001				mg/l			
	to not you.	10.10, 00.	. i.g, a.a.j		0.00000							
	326.00	0.9	810.1	8.10E+08	1.00E-06	9376	6.7	1399.41	49.4			
Blue Creek			<u> </u>		<u> </u>							
		Load Capacity	Conversion	mg/cubic foot	Conversion	Kg/cf	Conversion	Sediment load	Conversion	Tons per	Number of	Tons/year
	Mean annual	Concentratio n	Factor		mg to kg		seconds/day	at kg/day	kg to tons	day	Days/year	
	Discharge		cubic feet to		1E-06 or				1kg =			
	cfs	mg/l	liters		0.000001				0.0011 tons		365	
	6.7	49.4	28.312	9.38E+03	1.00E-06	9.38E-03	86400	8.10E+02	0.0011	8.91E-01	365	325
<u> </u>	-	-										
Blue Creek												
	High Yield	High Yield	High Yield	High Yield	Conversion	mg sec	Flow	mg/cubic foot	Conce	ntration		
	Bank Erosion	Bank Erosion	Bank Erosion	Bank Erosion	kg to mg							
					1E-06 or							
	tons/year	tons/day	kg/day	mg/day	0.000001				mg/l			
		,	<u> </u>	<u> </u>								
	5370.00	14.7	13344.1	1.33E+10	1.00E-06	154445	6.7	23051.55	814.1			
			1		1		1				1	
Blue Creek		<u> </u>				16.16						
		Load Capacity	Conversion	mg/cubic foot	Conversion	Kg/cf	Conversion	Sediment load	Conversion	Tons per	Number of	Tons/year
	Mean annual		Factor		mg to kg		seconds/day	at kg/day	kg to tons	day	Days/year	
	Discharge		cubic feet to		1E-06 or				1kg =			
	cfs	mg/l	liters		0.000001				0.0011 tons		365	
	6.7	814.1	28.312	1.54E+05	1.00E-06	1.54E-01	86400	1.33E+04	0.0011	1.47E+01	365	5357
										_		

Table D29. Discharge-Load Calculations

Reverse load Analysis Tons to mg/l

Nickel Creek												
	Low Yeild	Low Yeild	Low Yeild	Low Yeild	Conversion	mg sec	Flow	mg/cubic foot	Conce	ntration		
	Bank Erosion	Bank Erosion	Bank Erosion	Bank Erosion	kg to mg							
					1E-06 or							
	tons/year	tons/day	kg/day	mg/day	0.000001				mg/l			
	23.50	0.1	58.4	5.84E+07	1.00E-06	676	0.4	1689.70	59.7			
Nickel Creek												
		Load Capacity	Conversion	mg/cubic foot	Conversion	Kg/cf	Conversion	Sediment load	Conversion	Tons per	Number of	Tons/year
	Mean annual	Concentratio n			mg to kg		seconds/day	at kg/day	kg to tons	day	Days/year	
	Discharge		cubic feet to		1E-06 or				1kg =			
	cfs	mg/l	liters		0.000001				0.0011 tons		365	
	0.4	59.7	28.312	6.76E+02	1.00E-06	6.76E-04	86400	5.84E+01	0.0011	6.42E-02	365	23
			T						,		1	
Nickel Creek												
	High Yield	High Yield	High Yield	High Yield	Conversion	mg sec	Flow	mg/cubic foot	Concei	ntration		
	Bank Erosion	Bank Erosion	Bank Erosion	Bank Erosion	kg to mg							
					1E-06 or							
	tons/year	tons/day	kg/day	mg/day	0.000001				mg/l			
	387.00	1.1	961.7	9.62E+08	1.00E-06	11130	0.4	27826.06	982.7			
NE L LO		<u> </u>	<u> </u>		<u> </u>		<u> </u>		1		1	
Nickel Creek		Load	Conversion	mg/cubic foot	Conversion	Kg/cf	Conversion	Sediment load	Conversion	Tons per	Number of	Tons/year
	Mean annual	Capacity	Factor	1001	mg to kg		seconds/day	at kg/day	kg to tons	day	Days/year	
	Discharge		cubic feet to		1E-06 or				1kg =			
	cfs	mg/l	liters		0.000001				0.0011 tons		365	
	0.4	982.7	28.312	1.11E+04	1.00E-06	1.11E-02	86400	9.62E+02	0.0011	1.06E+00	365	386
		1										

Table D30 12 Month Discharge Model Castle Creek

Flow

cfs

Estimated Table Flows 6th Field HUC 17050104 Castle Creek 0603

Standard

Error

June

Area	Area	Mean	Basin	Slopes	Mean	Landus		Distanc	Dista	Elevatio	Elevati	Main	1				
		Basin	5 " (000/		_ е	Slope	_e	nce	n	on	0.1					
		Elevatio	Relief	>30%		Foreste		Total		Change	-	Chan					
		n			al Preci	d	е		85%		e ^@10 a	nel and 85 Slope					
											%						
Acres	Miles	feet	feet	%	p. in	%	%	miles	miles	meters	feet	ft/mile					
												S					
15372	24	6400	1664	20	14.6	30	20	11	10		1280	155.1 5					
					·												
A=	24		Total														
E=	5.4			harge	Α	BS	S30	F		Total							
BR=	1664		Powe		0.963	-3.44	2.52	0.646		Dischar							
			r							ge							
S30=S+1	21				24	20	21	31		cfs							
%=	440																
P=	14.6		0-	0.075	24.24	0.0000	04.47.7	0.40		44.00							
F=	31		Qa=	8.37E- 01	21.34	0.0000 335	2147.7	9.19		11.80							
BS=	20			01		555	3										
MCS=	155.2																
Power	MCS	F	Р			Power	MCS	F	Р				Power	MCS	F		
June						July							August				
Q80	-1.46	0.775	1.21			Q80	-1.21	0.587	0.061				Q80	-1.03	0.465		j
									7								
Q50	-1.53	0.844	1.65			Q50	-1.36	0.698	0.464				Q50	-1.28	0.57		
Q20	-1.55	0.793	1.9			Q20	-1.55	0.734	0.876				Q20	-1.39	0.648		
June		MCS	F	Р	Flow	July		MCS	F	Р	Flow		August		MCS	F	Flow
Q.80=	5.47E+	0.00063	14.31	25.64	12.71		2.66E+	2.23E-	7.506	1.18	5.26		Q.80=	1.34E+		4.937	3.67
	01	31	55				02	03	36					02	03	23	
Q.50=		0.00044		83.40	24.16	Q.50=		1.05E-	10.98	3.47	9.71		Q.50=	4.80E+		7.080	5.34
0.00	01	48	3	400.00	40.00	0.00	02	03	93	40.47	44.00		0.00	02	03	7	0.00
Q.20=		0.00040	15.22 82	163.03	43.03	Q.20=	2.85E+	4.02E- 04	12.43	10.47	14.92		Q.20=	9.86E+ 02	9.01E- 04	9.255	8.22
1	01	21	82			1	02	04	54				1	UZ	04	55	

Flow

cfs

Flow

cfs

Standard Error

August

Flow

cfs

Flow

cfs

Standard Error

July

Flow

cfs

I	P												·						
	Q80	143.7%	to	-	30.98	5.21	Q80	185.6	to	-	15.03	1.84		Q80	214.8%	to	-	11.54	1.17
				59.0				%		65.0							68.2		
				%						%							%		
	Q50	165.6%		-	64.17	39.24	Q50	155.3		-	24.80	3.81		Q50	195.7%		-	15.78	1.80
				62.4				%		60.8							66.2		
				%						%							%		
	Q20	167.4%		-	115.05	69.96	Q20	140.0		-	35.81	6.22		Q20	163.3%		-	21.66	3.13
				62.6				%		58.3							62.0		
				%						%							%		

Power	MCS	F			Power	MCS	F			Power	MCS	F		
September					Octobe					Novemb				Ī
					r					er				
Q80	-0.992	0.469			Q80	-1.09	0.432			Q80	-1.26	0.503		
Q50	-1.23	0.503			Q50	-1.27	0.523			Q50	-1.36	0.568		
Q20	-1.36	0.547			Q20	-1.43	0.598			Q20	-1.42	0.594		
September		MCS	F	Flow	Octobe r		MCS	F	Flow	Novemb er		MCS	F	Flow
Q.80=	1.10E+ 02	0.00671 07	5.005 51	3.69	Q.80=	2.27E+ 02	4.09E- 03	4	4.10	Q.80=	5.28E+ 02	1.74E- 03	5.625 42	5.16
Q.50=	3.98E+ 02	0.00202 01	5.625 42	4.52	Q.50=	5.77E+ 02	1.65E- 03	6	5.74	Q.50=	9.89E+ 02	1.05E- 03	7.032 24	7.29
Q.20=	9.48E+ 02	0.00104 85	6.542 97	6.50	Q.20=	1.56E+ 03	7.37E- 04	8	8.96	Q.20=	1.71E+ 03	7.75E- 04	7.688 98	10.19

Standard Error				Flow	Flow	Standa	rd Error			Flow	Flow	Standa	rd Error			Flow	Flow
September				cfs	cfs	Octobe r				cfs	cfs	Noveme br				cfs	cfs
Q80	204.1%	to	- 67.1 %	11.24	1.22	Q80	161.2 %	to	- 61.7 %	10.70	1.57	Q80	115.9%	to	- 53.7 %	11.13	2.39
Q50	192.2%		- 65.8 %	13.22	1.55	Q50	137.8 %		- 58.0 %	13.65	2.41	Q50	99.2%		49.8 %	14.53	10.92
Q20	172.3%		-63%	17.71	2.39	Q20	103.6 %		50.9 %	18.24	13.52	Q20	89.8%		47.3 %	19.33	15.00

Power	MCS	F	Р			Power	Е	S30	MCS	F			Power	E	S30	MCS	F		
December						Januar							Februar						
						У							У						
Q80	-1.26	0.507				Q80	-0.526	0.209	-1.33	0.485			Q80	-1.130	0.488	-1.47	0.47		
Q50	-1.35	0.565				Q50	-1.55	0.468	-1.41	0.548			Q50	-3.06	0.939	-1.53	0.548		
Q20	-1.29	0.606				Q20	-3.85	1.02	-1.49	0.705			Q20	-4.06	1.21	-1.56	0.515		
December		MCS	F	Р	Flow	Januar		E	S30	MCS	F	Flow	Februar		Е	S30	MCS	F	Flow
						У							У						

Upper (Dwyhe	e Wate	rshed	SBA-	TMDL						Janu	ary 2003	
Q.80=		0.00173	5.703	1.00	5.91	Q.80=	1.16E+	4.12E-	1.889	0.00122	5.3	5.82	Q.80
	00	C 4	22				00	0.4	40	^			

Q.80=	5.97E+ 0.00173 5.703	1.00 5.91	Q.80= 1.16E+	4.12E-	1.889	0.00122	5.3	5.82	Q.80 =	3.94E+	1.49E-	4.418	0.00060	5.0	7.83E+
	02 64 22		03	01	49	0				03	01	18	2		00
Q.50=	1.02E+ 0.00110 6.960	1.00 7.83	Q.50= 5.82E+	7.32E-	4.157	0.00081	6.6	9.48	Q.50 =	5.18E+	5.74E-	17.44	0.00044	6.6	1.51E+
	03 28 16		03	02	18	5				04	03	07	5		01
Q.20=	1.14E+ 0.00149 8.012	1.00 13.63	Q.20= 1.27E+	1.51E-	22.31	0.00054	11.3	26.30	Q.20=	3.05E+	1.06E-	39.80	0.00038	5.9	2.89E+
	03 25 45		05	03	84	4				05	03	02	2		01

Standard Error				Flow	Flow	Standa	rd Error			Flow	Flow		Standar	d Error			Flow	Flow
December				cfs	cfs	Januar				cfs	cfs		Februar				cfs	cfs
Q80	91.9%	to	- 47.9 %	11.35	3.08	Q80	90.9%	to	- 47.6 %	11.12	2.77		Q80	88.1%	to	- 46.8 %	14.72	2.67
Q50	91.2%		47.7 %	14.97	11.56	Q50	88.4%		- 47.7 %	17.86	3.43		Q50	99.7%		- 49.9 %	30.24	3.29
Q20	107.0%		51.7 %	28.22	20.68	Q20	89.2%		- 51.7 %	49.76	5.44		Q20	125.4%		- 55.6 %	65.18	2.60

Power	Α	Е	S30	F			Power	BS	S30	MCS	F			Power	MCS		F	Р	
March							April							May					
Q80	0.922	-1.75	0.354	0.537			Q80	-3.340	2.8	-1.52	0.795			Q80	-1.480		0.817	1.9	
Q50	1	-2.97	0.684	0.546			Q50	-2.12	2.01	-1.55	0.746			Q50	-1.49		0.862	2.13	Ī
Q20	1.04	-3.59	0.82	0.470			Q20	-0.607	1.02	-1.57	0.57			Q20	-1.43		0.699	2.26	
March		Α	Е	S30	F	Flow	April		BS	S30	MCS	F	Flow	May			F	Р	Flow
Q.80=	4.10E-	18.7307	5.2E-	2.94	6.32	7.46	Q.80=	1.17E+	4.51E-	5037.	0.00046	15.333	19.15	Q.80=	1.28E+	5.72E-	16.54	163.0	1.98
	01	3	02					04	05	49	8				00	04		31	
Q.50=		24.0000		8.02	6.52	13.25	Q.50 =	9.86E+	1.75E-		0.00040	13.0	40.76	Q.50=	1.38E+	5.44E-	13.23		3.00
	00	0	03					03	03	33	2				00	04		45	
Q.20=		27.2533		12.14	5.02	24.74	Q.20=		1.62E-		0.00036	7.1	71.41	Q.20=	1.91E+	7.37E-	33.99		20.47
	00	4	03			_		03	01	84	4				00	04		94	

Standard				Flow	Flow	Standa	rd Error			Flow	Flow		Standa	rd Error			Flow	Flow
Error																		
March				cfs	cfs	April				cfs	cfs		May				cfs	cfs
Q80	131.0%	to	-	17.23	3.23	Q80	110.5	to	-	40.31	9.10		Q80	151.5%	to	-	4.97	0.79
			56.7				%		52.5							60.2		
			%						%							%		
Q50	139.1%		-	31.69	5.53	Q50	139.6		-	97.66	17.00		Q50	180.3%		-	8.41	1.07
			58.3				%		58.3							64.3		
			%						%							%		
Q20	132.2%		-	57.44	10.66	Q20	161.5		61.8	186.74	115.54		Q20	163.9%		-	54.01	7.65
			56.9				%		%							62.6		
			%													%		

Elevation

Main

Mean

Basin

Basin

Table D31 12 Month Discharge Model Blue Creek

Slopes

Mean Landus

е

Slope

Estimated Flows 6th Field HUC ###### Blue Creek Reservoir

> Are a

Area

	а	Elevatio n	Relief	>30%	Annual Precip.	Foreste d	Averag e	Total	^10 & 85%	Change	^@10 and 8	Channe I 85 Slope					
Acres	Mile s	feet	feet	%	in	%	%	miles	miles	meters	% feet	ft/miles					
39224	61.	5760	800	10	15	0	10	20.2	13.8		620	40.92					
A=	61. 3		Total														
E= BR= S30=S+1%= P=	5.4 800 = 11		Discha Power	arge	A 0.963 61.3	BS -3.44 10	S30 2.52 11	F 0.646 1		Total Discha cfs	arge						
F=	15 1		Qa=	8.37E- 01	52.64	######	421.03	1.00		6.74							
BS= MCS=	10 40. 9																
Power	MC S	F	Р			Power	MCS	F	Р				Power	MCS	F		
June Q80	1.4	0.775	1.21			July Q80	-1.21	0.587	0.0617				August Q80	-1.03	0.465		
Q50	6 - 1.5	0.844	1.65			Q50	-1.36	0.698	0.464				Q50	-1.28	0.57		
Q20	3 - 1.5 5	0.793	1.9			Q20	-1.55	0.734	0.876				Q20	-1.39	0.648		
June Q.80=	5.4 7E+ 01	MCS 0.00443 1	F 1	P 26.49	Flow 6.42	July Q.80=	2.66E+ 02	MCS 1.12E- 02	F 1	P 1.18	Flow 3.52		August Q.80=	1.34E+ 02	MCS 2.19E- 02	F 1	Flow 2.93
Q.50=		0.00341 7	1	87.21	10.70	Q.50=	2.43E+ 02	6.42E- 03	1	3.51	5.48		Q.50=	4.80E+ 02	8.64E- 03	1	4.15
Q.20=		0.00317 3	1	171.62	23.47	Q.20=	2.85E+ 02	3.17E- 03	1	10.72	9.69		Q.20=	9.86E+ 02	5.75E- 03	1	5.67

Basin Distanc Distanc Elevatio

Standard E	rror		Flow	Flow	Standard Error	t		Flo	w Flo	w	Stand Err				Flow	Flow	
June			cfs	cfs	July				cfs	cfs		Augu	ıst			cfs	cfs
Q80	143 .79	 -59.09	% 15.65	2.63	Q80	185.6%	to	-65.0%	10.06	1.23		Q80	214.8%	to	-68.2%	9.22	0.93
Q50	165 .69	-62.49	28.41	17.37	Q50	155.3%		-60.8%	14.00	2.15		Q50	195.7%		-66.2%	12.27	1.40
Q20	167 .49	-62.69	62.75	38.16	Q20	140.0%		-58.3%	23.27	4.04		Q20	163.3%		-62.0%	14.92	2.15

D	МО Б			L D	1400					_	D	1400				—
Power	MC F S			Power	MCS	F					Power	MCS	F			
Septembe	-		ī	October					ı	No	ember/				ı	I
Q80	- 0.469	.	ı	Q80	-1.09	0.432			ı	INO	Q80	-1.26	0.503		ı	1
QOU	0.40	,		QOU	-1.03	0.432					QUU	-1.20	0.505			
	92															
Q50	- 0.503	3		Q50	-1.27	0.523					Q50	-1.36	0.568			
	1.2					****										
	3															
Q20	- 0.547	7		Q20	-1.43	0.598					Q20	-1.42	0.594			
	1.3															
	6															
Septembe	er MCS	F	Flow	October	MC	S F		Flow		No	ember/	MCS	F		Flow	ı
Q.80=	1.1 0.025		2.77	Q.80=		1.75E-	1	3.97	ı	INU	Q.80=	5.28E+	9.31E-	1	4.9	12 I
Q.00=	0E+ 2		2.77	Q.00=	02	02	•	3.31			Q.00=	02	03		7.0	۲
	02				02	<u>-</u>						02	00			
Q.50=	3.9 0.0104	10 1	4.14	Q.50=	5.77E+	8.97E-	1	5.18			Q.50=	9.89E+	6.42E-	1	6.3	55
·	8E+ 6				02	03						02	03			
	02															
Q.20=	9.4 0.0064	12 1	6.09	Q.20=	1.56E+	4.95E-	1	7.73			Q.20=	1.71E+	5.14E-	1	8.7	9
	8E+ 3				03	03						03	03			
	02															

Standard E	rror			Flow		Flow	Standa	rd			Flo	w Flo	w		Sta	ındard			Flow	Flow	1
							Error								E	rror					
Septembe	er			cfs		cfs	Octob	er			cfs	cf	S		Nov	/emebr			cfs	cfs	1
Q80	20 ₄)	-67.1%	8.42		0.91	Q80	161.2	%	to	-61.7%	10.37	1.52			Q80	115.9%	to	-53.7%	10.61	2.28
Q50	192 .2%		-65.8%	12.10)	1.42	. Q50	137.8	%		-58.0%	12.31	2.17			Q50	99.2%		49.8%	12.65	9.52
Q20	172 .3%		-63%	16.58	3	2.23	Q20	103.6	%		50.9%	15.73	11.66			Q20	89.8%		47.3%	16.68	12.95

Power	MC	F	Р		Power	E	S30	MCS	F		Power	E	S30	MCS	F
	S														
December	r			Jai	nuary					Ī	February				

Upper (Dwyhee Wate	ershed SBA	A-TMDL					Janu	ary 20	003						
Q80	- 0.507 1.2 6			Q80	-0.526	0.209	-1.33	0.485			Q80	-1.130	0.488	-1.47	0.47	
Q50	- 0.565 1.3			Q50	-1.55	0.468	-1.41	0.548			Q50	-3.06	0.939	-1.53	0.548	
Q20	5 - 0.606 1.2 9			Q20	-3.85	1.02	-1.49	0.705			Q20	-4.06	1.21	-1.56	0.515	
Decembe	er MCS	F P	Flow Ja	nuarv		E	S30 I	MCS	F I	Flow	Februar	v E	S3	30 MC	S F	
Q.80=	5.9 0.00930 7E+ 9 02	1 1.0		Q.80=	1.16E+ 03	4.12E- 01	1.65063 5	0.00717 9	1.0	5.66		3.94E+ 03	1.49E- 01	3.22255	0.00427	1.0
Q.50=	1.0 0.00666 2E+ 5 03	1 1.0	6.80	Q.50=	5.82E+ 03	7.32E- 02	3.07165	0.00533 5	1.0	6.99	Q.50=	5.18E+ 04	5.74E- 03	9.50315 3	0.00341 7	1.0
Q.20=	1.1 0.00832 4E+ 8 03	1 1.0	9.49	Q.20=	1.27E+ 05	1.51E- 03	11.5403 9	0.00396 4	1.0	8.80	Q.20=	3.05E+ 05	1.06E- 03	18.2005 8	0.00305 7	1.0

Standard Erro	or			Flov	v	Flow	Standar Error	d			Flov	v Flo	w			andard Error			Flow	Flow	
December				cfs		cfs	Januar	У			cfs	cf	S		Fel	bruary			cfs	cfs	
	91. 9%	to	-47.9	% 10	0.66	2.90	Q80	90.9%	Ď	to	-47.6%	10.81	0.5	2		Q80	88.1%	to	-46.8%	15.17	0.53
	91. 2%		-47.7	% 1:	3.00	3.56	Q50	88.4%	Ď		-47.7%	13.16	0.5	2		Q50	99.7%		-49.9%	19.28	0.50
	107 .0%		-51.7	% 19	9.65	4.59	Q20	89.2%	Ó		-51.7%	16.65	0.48	8		Q20	125.4%		-55.6%	40.66	0.44

Power	Α	Е	S30	F			Power	BS	S30	MCS	F			Power	MCS	F	Р	
March Q80	0.9 22	-1.75	0.354	0.537			April Q80	-3.340	2.8	-1.52	0.795			May Q80	-1.480	0.817	1.9	
Q50	1	-2.97	0.684	0.546			Q50	-2.12	2.01	-1.55	0.746			Q50	-1.49	0.862	2.13	
Q20	1.0 4	-3.59	0.82	0.470			Q20	-0.607	1.02	-1.57	0.57			Q20	-1.43	0.699	2.26	
June Q.80=	4.1 0E- 01	A 44.4670 7	E 5.2E-02	\$30 2.34	F 1.00	Flow 2.23	April Q.80=	1.17E+ 04	BS 4.57E- 04	\$30 823.947 5	MCS 0.00354 6	F 1.0	Flow 15.68	July Q.80=	1.28E+ 00	F 1	P 9.13832 4	Flow 11.70
Q.50=	1.5 8E+ 00	61.3000 0	6.7E-03	5.16	1.00	3.34	Q.50=	9.86E+ 03	7.59E- 03	123.936 5	0.00317	1.0	29.41	Q.50=	1.38E+ 00	1	10.3226 4	14.25
Q.20=			2.3E-03	7.14	1.00	7.69	Q.20=	7.66E+ 03	2.47E- 01	11.5403 9	0.00294 6	1.0	64.36	Q.20=	1.91E+ 00	1	6.63877	12.68

Standard Error	Flow	Flow	Standard	Flow	Flow	Standard		Flow	Flow
			Error			Error			

						_						_					
March				cfs	cfs	April				cfs	cfs	May				cfs	cfs
Q80	131	to	-56.7%	5.15	0.96	Q80	110.5%	to	-52.5%	33.01	7.45	Q80	151.5%	to	-60.2%	29.42	4.66
	.0%																
Q50	139		-58.3%	7.98	1.39	Q50	139.6%		-58.3%	70.47	12.26	Q50	180.3%		-64.3%	39.93	5.09
	.1%																
Q20	132		-56.9%	17.85	3.31	Q20	161.5%		61.8%	168.31	104.14	Q20	163.9%		-62.6%	33.46	4.74
	.2%																

Table D32 12 Month Discharge Model Juniper Creek

Estimated Flows 6th Field HUC 170501 Juniper Basin 040603

Area	Area	Mean Basin Elevatio	Basin Relief	Slopes >30%	Mean	Landus e Foreste	Basin Slope Averag	Distanc e Total	Distanc e ^10 &	Elevatio n Change	Elevation	Main Channel				
		n	1 (01101	20070	71111441	d	e	rotai	85%	Orlango	Onlango	Griannion				
					Precip.						^@10 and 85	Slope				
		_	_								%					
Acres	Miles	feet	feet	%	in	%	%	miles	miles	meters	feet	ft/miles				
53051	82.9	5400	400	5	14.6	0	10	12.9	10.6		482	49.82				
A=	82.9		Total													
E=	5.4		Dischar		Α	BS	S30	F		Total						
			ge													
BR=	400		Power		0.963	-3.44	2.52	0.646		Discha	irge					
S30=S+ 1%=	- 6				82.9	10	6	1		cfs						
P=	14.6															
F=	1		Qa=	8.37E-	70.40	0.00036	91.40	1.00		1.96						
				01		31										
BS= MCS=	10 49.8															
IVICS=	49.0															
Power	MCS	F	Р			Power	MCS	F	Р			Power	MCS	F		
June						July					<u> </u>	August				ļ
Q80	-1.46	0.775	1.21			Q80	-1.21	0.587	0.0617			Q80	-1.03	0.465		
Q50 Q20	-1.53 -1.55	0.844 0.793	1.65 1.9			Q50 Q20	-1.36 -1.55	0.698 0.734	0.464 0.876			Q50 Q20	-1.28 -1.39	0.57 0.648		
QZO	1.55	0.7 55	1.5			QZU	1.55	0.754	0.070			QZO	1.55	0.040		
June		MCS	F	Р	Flow	July		MCS	F	Р	Flow	August		MCS	F	Flow
Q.80=	5.47E+	0.00332	1	25.64	4.66	Q.80=	2.66E+	8.83E-	1	1.18	2.77	Q.80=	1.34E+	1.79E-	1	2.39
0.50	01	5077	4	00.40	7.57	0.50	02	03	4	0.47	4.4.4	0.50	02	02	4	2.00
Q.50=	3.59E+ 01	0.00252 9205	1	83.40	7.57	Q.50=	2.43E+ 02	4.92E- 03	1	3.47	4.14	Q.50=	4.80E+ 02	6.72E- 03	1	3.23
Q.20=	4.31E+	0.00233	1	163.03	16.44	Q.20=	2.85E+	2.34E-	1	10.47	6.98	Q.20=	9.86E+	4.37E-	1	4.31
	01	9032					02	03		- "			02	03		

Standa	rd Error			Flow	Flow	Standar	d Error			Flow	Flow		Standar	d Error			Flow	Flow
June				cfs	cfs	July				cfs	cfs		August				cfs	cfs
Q80	143.7%	to	-59.0%	11.36	1.91	Q80	185.6%	to	-65.0%	7.92	0.97		Q80	214.8%	to	-68.2%	7.53	0.76
Q50	165.6%		-62.4%	20.11	12.30	Q50	155.3%		-60.8%	10.58	1.62		Q50	195.7%		-66.2%	9.54	1.09
Q20	167.4%		-62.6%	43.95	26.72	Q20	140.0%		-58.3%	16.75	2.91		Q20	163.3%		-62.0%	11.35	1.64

Power Septem ber Q80 Q50 Q20	-0.992 -1.23 -1.36	F 0.469 0.503 0.547			Power October Q80 Q50 Q20	-1.09 -1.27 -1.43	F 0.432 0.523 0.598			Power Novem ber Q80 Q50 Q20	-1.26 -1.36 -1.42	F 0.503 0.568 0.594		
Septem ber		MCS	F	Flow	October		MCS	F	Flow	Novem ber		MCS	F	Flow
Q.80=	1.10E+ 02	0.02071 0143	1	2.28	Q.80=	2.27E+ 02	1.41E- 02	1	3.21	Q.80=	5.28E+ 02	7.27E- 03	1	3.84
Q.50=	3.98E+ 02	0.00816 9639	1	3.25	Q.50=	5.77E+ 02	6.99E- 03	1	4.03	Q.50=	9.89E+ 02	4.92E- 03	1	4.86
Q.20=	9.48E+ 02	0.00491 5202	1	4.66	Q.20=	1.56E+ 03	3.74E- 03	1	5.83	Q.20=	1.71E+ 03	3.89E- 03	1	6.65

Standa	rd Error			Flow	F	Flow	Standar	d Error			Flow	Flow		Standar	d Error			Flow	Flow
Septem				cfs		cfs	October				cfs	cfs		Novem				cfs	cfs
ber														ebr					
Q80	204.1%	to	-67.1%	6.93		0.75	Q80	161.2%	to	-61.7%	8.37	1.23		Q80	115.9%	to	-53.7%	8.28	1.78
Q50	192.2%		-65.8%	9.50		1.11	Q50	137.8%		-58.0%	9.59	1.69		Q50	99.2%		49.8%	9.68	7.28
Q20	172.3%		-63%	12.69		1.71	Q20	103.6%		50.9%	11.87	8.80		Q20	89.8%		47.3%	12.62	9.79

Power	MCS	F	Р			Power	Е	S30	MCS	F			Power	Е	S30	MCS	F		
Decem ber						January							Februar v						
Q80	-1.26	0.507				Q80	-0.526	0.209	-1.33	0.485			Q80	-1.130	0.488	-1.47	0.47		
Q50	-1.35	0.565				Q50	-1.55	0.468	-1.41	0.548			Q50	-3.06	0.939	-1.53	0.548		
Q20	-1.29	0.606				Q20	-3.85	1.02	-1.49	0.705			Q20	-4.06	1.21	-1.56	0.515		
Decem ber		MCS	F	Р	Flow	January		Е	S30	MCS	F	Flow	Februar V		Е	S30	MCS	F	Flow
Q.80=	5.97E+ 02	0.00726 5759	1	1.00	4.34	Q.80=	1.16E+ 03	4.12E- 01	1.45423 171	0.00552 7	1.0	3.84	Q.80=	3.94E+ 03	1.49E- 01	2.39738 515	0.00319	1.0	4.49E+ 00
Q.50=	1.02E+ 03	0.00511 1111	1	1.00	5.21	Q.50=	5.82E+ 03	7.32E- 02	2.31299 549	0.00404	1.0	3.99	Q.50=	5.18E+ 04	5.74E- 03	5.37878 301	0.00252	1.0	4.04E+ 00
Q.20=	1.14E+	0.00646	1	1.00	7.37	Q.20=	1.27E+	1.51E-	6.21891	0.00295	1.0	3.54	Q.20=	3.05E+	1.06E-	8.74103	0.00224	1.0	6.37E+
	03	1883					05	03	005	7				05	03	809	9		00

Standa	rd Error			Flow	Flov	/ Sta	andard	Error			Flow	Flow		Standar	d Error			Flow	Flow
Decem				cfs	cfs	Jar	nuary				cfs	cfs		Februar				cfs	cfs
ber														У					
Q80	91.9%	to	-47.9%	8.32	2.20	C	Q80	90.9%	to	-47.6%	7.33	0.52		Q80	88.1%	to	-46.8%	8.45	0.53
Q50	91.2%		47.7%	9.97	7.70) (Q50	88.4%		-47.7%	7.51	0.52		Q50	99.7%		-49.9%	8.08	0.50
Q20	107.0%		51.7%	15.25	11.1	8 C	Q20	89.2%		-51.7%	6.69	0.48		Q20	125.4%		-55.6%	14.37	0.44

Power	Α	Е	S30	F	Power	BS	S30	MCS	F	Power	MCS	F	Р	

1.44.	-											•		1				
March							April							May				
Q80	0.922	-1.75	0.354	0.537			Q80	-3.340	2.8	-1.52	0.795			Q80	-1.480	0.817	1.9	
Q50	1	-2.97	0.684	0.546			Q50	-2.12	2.01	-1.55	0.746			Q50	-1.49	0.862	2.13	
Q20	1.04	-3.59	0.82	0.470			Q20	-0.607	1.02	-1.57	0.57			Q20	-1.43	0.699	2.26	
June		Δ	F	S30	F	Flow	April		BS	S30	MCS	F	Flow	July		F	Р	Flow
Q.80=	4.10E-	58.7363	5 2F-02	1.89	1.00	2.37	Q.80=	1.17E+	4.57E-		0.00263	1.0	2.13	Q.80=	1.28E+	1	8.93873	11.44
Q.00-	01	9	0.22 02	1.00	1.00	2.01	Q.00 -	04	04	658	0	1.0	2.10	Q.00 -	00	•	955	
Q.50=	1.58E+	82.9000	6.7E-03	3.41	1.00	2.98	Q.50 =	9.86E+	7.59E-	36.6508	0.00233	1.0	6.41	Q.50=	1.38E+	1	10.0849	13.92
	00	0						03	03	468	9				00		131	
Q.20=	6.34E+	98.9228	2.3E-03	4.35	1.00	6.40	Q.20 =	7.66E+	2.47E-	6.21891	0.00216	1.0	25.47	Q.20=	1.91E+	1	6.51452	12.44
	00	7						03	01	005	3				00		337	

Standa	rd Error			Flow	Flow	Standar	d Error			Flow	Flow		Standar	d Error			Flow	Flow
March				cfs	cfs	April				cfs	cfs		May				cfs	cfs
Q80	131.0%	to	-56.7%	5.48	1.03	Q80	110.5%	to	-52.5%	4.48	1.01		Q80	151.5%	to	-60.2%	28.78	4.55
Q50	139.1%		-58.3%	7.13	1.24	Q50	139.6%		-58.3%	15.36	2.67		Q50	180.3%		-64.3%	39.01	4.97
Q20	132.2%		-56.9%	14.86	2.76	Q20	161.5%		61.8%	66.60	41.21		Q20	163.9%		-62.6%	32.84	4.65

Table D33 12 Month Discharge Model Deep Creek

Estimated Flows 6th Field HUC 170501 Deep Creek 040603

Area	Area	Mean	Basin	Slopes	Mean La				stanc Ele		Elevation	Main					
		Basin Elevatio	Relief	>30%	Annual		Slope Averag	e Total	e ^10 &	n Change	Chang	ge Channel	Ī				
		n				d	е		85%	3							
					Pre	ecip.					^@10 an	nd 85 Slope					
Acres	Miles	feet	feet	%	in	%	%	miles	miles	meters	% feet	ft/mil	es I				
273563	427	5526	1920	10	14.9	29	18	38.1	27.3		912	31.92					
A=	427		Tota	al													
E=	5.4		Discha		Α	BS	S30	F		Total							
BR=	1920		Pow	er		-3.44		0.646		Dischar	ge						
S30=S+ 1%=	11				427	18	11	30		cfs							
1 /0- P-	14.9																
P= F=	30		Qa=	8.37E-	341.27	0.0000	4 421.03	9.00		52.03							
				01		81											
BS=	18																
MCS=	31.9																
Power	MCS	F	Р			Power	MCS	F	Р				Power	MCS	F		
June						July							Aug				
Q80	-1.46	0.775	1.21			Q80	-1.21	0.587	0.0617				Q80	-1.03	0.465		
Q50	-1.53	0.844	1.65			Q50	-1.36	0.698	0.464				Q50	-1.28	0.57		
Q20	-1.55	0.793	1.9			Q20	-1.55	0.734	0.876				Q20	-1.39	0.648		
June		MCS	F	Р	Flow	July		MCS	F	Р	Flow		Aug	ust	MCS	F	Flow
Q.80=	5.47E+	0.00637	13.9562	26.28	127.78	Q.8Ó=	2.66E+	1.51E-	7.36326	1.18	35.03			1.34E+	2.82E-	4.86251	18.40
	01	0118	57				02	02	07					02	02	98	
Q.50=	3.59E+	0.00499		86.25	273.15	Q.50=	2.43E+	9.01E-	10.7406	3.50	82.33		Q.50=	4.80E+	1.19E-		39.60
0.20-	01 4.31E+	8812 0.00466	9	160.45	505.45	0.20-	02 2.85E+	03 4.66E-	52 12.1396	10.66	172.01		0.20-	02 9.86E+	02 8.12E-	89 9.06096	72.52
Q.20=	4.31E+ 01	4302	78	109.40	505.45	Q.20=	2.85E+	4.66E- 03	73	10.00	1/2.01		Q.20=	9.86E+ 02	8.12E- 03	9.06096 75	12.54
	J 1	1002	. 0			I	02	30	. 0				I	3 <u>L</u>			

Stan	idard Erro	r	F	low	Flo	w St	andard Er	ror		F	low Fl	w	Standard	Error		Flow	Flow	ı
June				cfs		cfs	July				cfs	cfs	Aug	ust			cfs	cfs
Q80	143.7%	to	-59.0%	311.40		52.39	Q80	185.6%	to	-65.0%	6 100.06	12.26	Q80	214.8%	to	-68.2%	6 57.93	5.85
Q50	165.6%		-62.4%	725.50	4	143.60	Q50	155.3%		-60.8%	6 210.18	32.27	Q50	195.7%		-66.29	6 117.20	13.40
Q20	167.4%		-62.6%	1351.56	8	321.86	Q20	140.0%		-58.3%	6 412.82	71.73	Q20	163.3%		-62.0%	6 190.95	5 27.50

Power MCS F	Power MCS F	Power MCS F	
September	October	November	I
Q80 -0.992 0.469	Q80 -1.09 0.432	Q80 -1.26 0.503	-

Ilman	Ovvvvhaa	Watanaha	1 CD V	TIMI
Obber	Owvinee	Watershed	LODA	- ロッロフレ

Q50 -1.23 Q20 -1.36	0.503 0.547	Q50 Q20		0.523 0.598		Ž	Q50 -1.36 Q20 -1.42	0.568 0.594	
September	MCS F	Flow October		MCS	F	Flow	November	MCS F	Flow
Q.80= 1.10E+ 02	0.03221 4.92912 2429 54	17.47 Q.80	= 2.27E+ 02	2.29E- 02	4	22.63	Q.80= 5.28E+ 02	1.27E- 5.53339 02 9	37.20
Q.50= 3.98E+ 02	0.01412 5.53339 7634 9	31.11 Q.50	= 5.77E+ 02	1.23E- 02	6	42.04	Q.50= 9.89E+ 02	9.01E- 6.90247 03 55	61.48
Q.20= 9.48E+ 02	0.00900 6.42666 6339	54.87 Q.20	= 1.56E+ 03	7.07E- 03	8	84.28	Q.20= 1.71E+ 03	7.32E- 7.54067 03 16	94.34

Standard Error		Flow	Flow	Standard E	rror		Flo	w Flo	w		Standard E	rror		Flow	Flow	
September		cfs	cfs	October				cfs	cfs		Noveme	or		cfs	s cfs	S
Q80 204.1%	to -67.	1% 53.11	5.79	Q 80	161.2%	to	-61.7%	59.12	8.67		Q80	115.9%	to	-53.7%	80.32	17.22
Q50 192.2%	-65.8	90.91	10.6	4 Q50	137.8%		-58.0%	99.96	17.66		Q50	99.2%		49.8%	122.47	92.10
Q20 172.3%	-63	% 149.41	20.1	4 Q20	103.6%		50.9%	171.59	127.17		Q20	89.8%		47.3%	179.06	138.9

Powe	r MCS	F	Р			Power	Е	S30	MCS	F				Power	Е	S30	MCS	F	
Dec	ember				Ja	nuary								Februar	y				
Q80	-1.26	0.507				Q80	-0.526	0.209	-1.33	0.485			=	Q80	-1.130	0.488	-1.47	0.47	
Q50	-1.35	0.565				Q50	-1.55	0.468	-1.41	0.548				Q50	-3.06	0.939	-1.53	0.548	
Q20	-1.29	0.606				Q20	-3.85	1.02	-1.49	0.705				Q20	-4.06	1.21	-1.56	0.515	
Dec	ember	MCS	F	Р	Flow Ja	nuary		Е	S30	MCS	F	Flow	Ī	l Februar	у	E S	30 MC	CS F	F
Q.80=	= 5.97E+	0.01273	5.60919	1.00	42.64	Q.80 =	1.16E+	4.12E-	1.6506	3 0.00999	5.2	41.01	-	Q.80=	3.94E+	1.49E-	3.22254	0.00615	4.9
	02	354	42				03	01	51	2					03	01	97	3	
Q.50=	= 1.02E+	0.00932	6.83240	1.00	64.98	Q.50 =	5.82E+	7.32E-	3.0716	5 0.00757	6.4	63.96		Q.50 =	5.18E+	5.74E-	9.50315	0.00499	6.4
	03	3702	35				03	02	03	4					04	03	32	9	
Q.20=	= 1.14E+	0.01147	7.85480	1.00	102.77	Q.20 =	1.27E+	1.51E-	11.540	3 0.00574	11.0	140.19		Q.20=	3.05E+	1.06E-	18.2005	0.00450	5.8
	03	7014	63				05	03	91	2					05	03	77	6	

Standard Error		ror	Flow		Flow	Flow Standard Error				Flow Flow			Standard Error				Flow Flow			
Decer	December			cfs		cfs January			cfs cfs			February				cfs cfs				
Q80	91.9%	to	-47.9%	81.83	2	2.22	Q80	90.9%	to	-47.6%	78.30	2.73		Q80	88.1%		to	-46.8%	108.10	2.63
Q50	91.2%	1	47.7%	124.24	9	5.97	Q50	88.4%		-47.7%	120.5	0 3.37		Q50	99.7%			-49.9%	181.88	3.23
Q20	107.0%	ó	51.7%	212.74	15	5.90	Q20	89.2%		-51.7%	265.2	3 5.31		Q20	125.4%	-		-55.6%	345.37	2.56

Power	Α	E	S30	F			Power	BS	S30	MCS	F			Power	MCS		F	Р	
March							April							May					
Q80	0.922	-1.75	0.354	0.537			Q80	-3.340	2.8	-1.52	0.795			Q80	-1.480		0.817	1.9	
Q50	1	-2.97	0.684	0.546			Q50	-2.12	2.01	-1.55	0.746			Q50	-1.49		0.862	2.13	
Q20	1.04	-3.59	0.82	0.470			Q20	-0.607	1.02	-1.57	0.57			Q20	-1.43		0.699	2.26	Ī
March		Α	E	S30	F	Flow	April		BS	S30	MCS	F	Flow	May		MCS	F	Р	Flow
Q.80=	4.10E-	266.228	5.2E-02	2.34	6.21	82.84	Q.80=	1.17E+	6.42E-	823.947	0.00517	14.939	47.99	Q.80=	1.28E+	5.94E-	1	9.08852	116.33
	01	47						04	05	46	5				01	03		03	
Q.50 =	1.58E+	427.000	6.7E-03	5.16	6.40	148.83	Q.50=	9.86E+	2.18E-	123.936	0.00466	12.6	157.26	Q.50=	1.38E+	5.74E-	1	10.2632	141.63
	00	00						03	03	52	4				01	03		89	

Upper Owyhee Watershed SBA-TMDL January 2003

Q.20= 6.34E+ 544.057 2.3E-03 7.14 4.95 286.17 Q.20= 7.66E+ 1.73E- 11.5403 0.00435 6.9 462.56 03 01 91 2 Q.20= 1.91E+ 7.07E-01 03 6.60780 126.21 47 1

Standard Error			Flow		Flo	Flow Standard Error				Flow Flow				Standard Error					Flow	Flow	
March				cfs		cfs	April				cfs	cfs			May					cfs	cfs
Q80	131.0%	to	-56.7%	191.35		35.87	Q80	110.5%	to	-52.5%	101.02	22.80		(Q80	151.5%		to	-60.2%	292.58	46.30
Q50	139.1%		-58.3%	355.86		62.06	Q50	139.6%		-58.3%	376.79	65.58		•	Q50	180.3%			-64.3%	397.00	50.50
Q20	132.2%		-56.9%	664.50		123.34	4 Q20	161.5%	•	61.8%	1209.58	748.42		(Q20	163.9%			-62.6%	333.07	47.20